In the original languageTranslation into English

A COMPARISON OF THE EFFECTIVENESS OF DIFFERENT TYPES OF VIDEO GAME TREATMENT FOR AMBLYOPIA

Annotation

Patching the normal eye for more than two hours daily is the standard method for treating amblyopia, although compliance issues often obstruct treatment efficacy. Video game (VG) treatment is an engaging alternative for treating amblyopia, but its newness causes its effectiveness and weaknesses to be unknown. Through the review of literature, this study aims to find the most effective form of VG treatment and compare the effectiveness between different types of VG treatment. Four features of VG – game graphics type, genre, the device used, and the type of visual stimuli provided - were categorized. The improvement in visual acuity (VA) is measured in logMAR. Different categories of the four variables were compared to each other using the value of the average visual acuity (VA) improvement. Results show that virtual reality (VR) games are more effective than 2D and 3D games, with an average VA improvement of 0.37 logMAR. The action game genre is the most effective game genre associated with an average of 0.25 logMAR improvement, significantly more than strategy and casual games. For devices, the most effective type of device is VR of an unspecified immersion (unclear if it is immersive or non-immersive) with an average improvement of 0.62 logMAR. Treatments that provided only monocular visual stimuli were slightly more effective than dichoptic and binocular treatments. Limitations of this study are discussed. This literature review study suggests an optimized form of video game treatment may be superior to patching, as patients can improve at a faster rate.

Keywords

amblyopia
amblyopic
video games
pc games
computer games
treatment
training

References:

  1. Birch, E. E. (2013). Amblyopia and binocular vision. Progress in Retinal and Eye Research, 33, 67–84. https://doi.org/10.1016/j.preteyeres.2012.11.001
  2. Brown, M. T., Bussell, J., Dutta, S., Davis, K., Strong, S., & Mathew, S. (2016). Medication Adherence: Truth and Consequences. The American Journal of the Medical Sciences, 351(4), 387–399. https://doi.org/10.1016/j.amjms.2016.01.010
  3. Coco-Martin, M. B., Piñero, D. P., Leal-Vega, L., Hernández-Rodríguez, C. J., Adiego, J., Molina-Martín, A., de Fez, D., & Arenillas, J. F. (2020). The Potential of Virtual Reality for Inducing Neuroplasticity in Children with Amblyopia. Journal of Ophthalmology, 2020, 1–9. https://doi.org/10.1155/2020/7067846
  4. Dadeya, S., & Dangda, S. (2016). Television video games in the treatment of amblyopia in Children Aged 4–7 Years. Taylor & Francis, 24(4), 146–152. https://doi.org/10.1080/09273972.2016.1242637
  5. Deshpande, P., Bhalchandra, P., Nalgirkar, A., & Tathe, S. (2018). Improvement of visual acuity in residual meridional amblyopia by astigmatic axis video games. Indian Journal of Ophthalmology, 66, 1156–1160. https://doi.org/10.4103/ijo.IJO_1096_17
  6. Dylda, E., Pakan, J. M. P., & Rochefort, N. L. (2018). Chronic Two-Photon Calcium Imaging in the Visual Cortex of Awake Behaving Mice. In Handbook of Behavioral Neuroscience (Vol. 28, pp. 235–251). Elsevier. https://doi.org/10.1016/B978-0-12-812028-6.00013-6
  7. Elflein, H. M. (2016). Amblyopia. Epidemiology, causes and risk factors. Der Ophthalmologe.
  8. Foss, A. J. E. (2017). Use of video games for the treatment of amblyopia. Current Opinion in Ophthalmology, 28(3), 276–281. https://doi.org/10.1097/ICU.0000000000000358
  9. Gambacorta, C., Nahum, M., Vedamurthy, I., Bayliss, J., Jordan, J., Bavelier, D., & Levi, D. M. (2018). An action video game for the treatment of amblyopia in children: A feasibility study. Vision Research, 148, 1–14. https://doi.org/10.1016/j.visres.2018.04.005
  10. Green, C. S., & Bavelier, D. (2007). Action-Video-Game experience alters the spatial resolution of vision. Psychological Science, 18(1), 88–94. https://doi.org/10.1111/j.1467-9280.2007.01853.x
  11. Herbison, N., Cobb, S., Gregson, R., Ash, I., Eastgate, R., Purdy, J., Hepburn, T., MacKeith, D., & Foss, A. (2013). Interactive binocular treatment (I-BiT) for amblyopia: Results of a pilot study of 3D shutter glasses system. Eye, 27, 1077–1083. https://doi.org/10.1038/eye.2013.113
  12. Herbison, N., MacKeith, D., Vivian, A., Purdy, J., Fakis, A., Ash, I., Cobb, S., Eastgate, R., Haworth, S., Gregson, R., & Foss, A. (2016). Randomised controlled trial of video clips and interactive games to improve vision in children with amblyopia using the I-BiT system. Clinical Science, 100, 1511–1516. https://doi.org/10.1136/bjophthalmol-2015-307798
  13. Hess, R., Babu, R., Clavagnier, S., Black, J., Bobier, W., & Thompson, B. (2014). The iPod binocular home-based treatment for amblyopia in adults: Efficacy and compliance. Clinical and Experimental Optometry, 97, 389–398. https://doi.org/10.1111/cxo.12192
  14. Jeon, S., Maurer, D., & Lewi, T. (2012). The effect of video game training on the vision of adults with bilateral deprivation amblyopia. Seeing and Perceivin, 25, 493–520. https://doi.org/10.1163/18784763-00002391
  15. Kelly, K., Jost, R., Dao, L., Beauchamp, C., Leffler, J., & Birch, E. (2016). Binocular iPad game vs patching for treatment of amblyopia in children:a randomized clinical trial. JAMA Ophthalmol, 134(12), 1402–1408. https://doi.org/10.1001/jamaophthalmol.2016.4224
  16. Kelly, K., Jost, R., Wang, Y., Dao, L., Beauchamp, C., Leffler, J., & Birch, E. (2018). Improved binocular outcomes following binocular treatment for childhood amblyopia. Eye Movements, Strabismus, Amblyopia and Neuro-Ophthalmology, 59(3), 1221–1228. https://doi.org/10.1167/iovs.17-23235
  17. Knox, P., Simmers, A., Gray, L., & Cleary, M. (2012). An exploratory study: Prolonged periods of binocular stimulation can provide an effective treatment for childhood amblyopia. Investigative Ophthalmology & Visual Science, 53(2), 817–824. https://doi.org/10.1167/iovs.11-8219
  18. Kraus, C. L., & Culican, S. M. (2018). New advances in amblyopia therapy I: Binocular therapies and pharmacologic augmentation. British Journal of Ophthalmology, 102(11), 1492–1496. https://doi.org/10.1136/bjophthalmol-2018-312172
  19. Lee, H., & Kim, S. (2018). Effectiveness of binocularity-stimulating treatment in children with residual amblyopia following occlusion. BMC Ophthalmology, 18(253). https://doi.org/10.1186/s12886-018-0922-z
  20. Levi, D. M. (2020). Rethinking amblyopia 2020. Vision Research, 176, 118–129. https://doi.org/10.1016/j.visres.2020.07.014
  21. Levi, D. M., Knill, D. C., & Bavelier, D. (2015). Stereopsis and amblyopia: A mini-review. Vision Research, 114, 17–30. https://doi.org/10.1016/j.visres.2015.01.002
  22. Li, R., Ngo, C., Nguyen, J., & Levi, D. (2011). Video-Game play induces plasticity in the visual system of adults with amblyopia. PLoS Biology, 9(8). https://doi.org/10.1371/journal.pbio.1001135
  23. Lin, H., Wu, F.-G., & Cheng, Y.-Y. (2013). Legibility and visual fatigue affected by text direction, screen size and character size on color LCD e-reader. Displays, 34(1), 49–58. https://doi.org/10.1016/j.displa.2012.11.006
  24. Liu, X.-Y., & Zhang, J.-Y. (2018). Dichoptic training in adults with amblyopia: Additional stereoacuity gains over monocular training. Vision Research, 152, 84–90. https://doi.org/10.1016/j.visres.2017.07.002
  25. Magramm, I. (1992). Amblyopia: Etiology, Detection, and Treatment. Pediatrics in Review, 13(1), 7–14. https://doi.org/10.1542/pir.13-1-7
  26. Manh, V. M., Holmes, J. M., Lazar, E., Kraker, R. T., Wallace, D. K., Kulp, M. T., Galvin, J. A., Shah, B. K., & Davis, P. L. (2018). A randomized trial of a binocular iPad game versus part-time patching in children aged 13 to 16 years with amblyopia. Ophthalmol, 186, 104–115. https://doi.org/10.1016/j.ajo.2017.11.017
  27. Maurer, D., & McKEE, S. P. (2018). Classification and diversity of amblyopia. Visual Neuroscience, 35. https://doi.org/10.1017/S0952523817000190
  28. McConaghy, J. R., & McGuirk, R. (2019). Amblyopia: Detection and Treatment. American Family Physician, 100(12), 745–750.
  29. Mocanu, V., & Horhat, R. (2018). Prevalence and Risk Factors of Amblyopia among Refractive Errors in an Eastern European Population. Medicina, 54(1), 6. https://doi.org/10.3390/medicina54010006
  30. Rajavi, Z., Sabbaghi, H., Sharif, E., Behradfar, N., & Yaseri, M. (2016). The role of Interactive Binocular Treatment system in amblyopia therapy. Journal of Current Ophthalmology, 28, 217–222. https://doi.org/10.1016/j.joco.2016.07.005
  31. Singh, A., Sharma, P., & Saxena, R. (2017). Evaluation of the Role of Monocular Video Game Play as an Adjuvant to Occlusion Therapy in the Management of Anisometropic Amblyopia. Journal of Pediatric Ophthalmology & Strabismus, 54(4), 244–249. https://doi.org/10.3928/01913913-20170320-04
  32. Vedamurthy, I., Nahum, M., Huang, S. J., Zheng, F., Bayliss, J., Bavelier, D., & Levi, D. M. (2015). A dichoptic custom-made action video game as a treatment for adult amblyopia. Vision Research, 14, 173–187. https://doi.org/10.1016/j.visres.2015.04.008
  33. Wu, S., Cheng, C. K., Feng, J., D’Angelo, L., Alain, C., & Spence, I. (2012). Playing a First-person Shooter Video Game Induces Neuroplastic Change. Journal of Cognitive Neuroscience, 24(6), 1286–1293. https://doi.org/10.1162/jocn_a_00192
  34. Žiak, P., Holm, A., Halička, J., Mojžiš, P., & Piñero, D. (2017). Amblyopia treatment of adults with dichoptic training using the virtual reality oculus rift head mounted display: Preliminary results. BMC Ophthalmology, 17(105). https://doi.org/10.1186/s12886-017-0501-8

Other articles of the issue

cc-license