НЕКОТОРЫЕ АПРИОРНЫЕ ОЦЕНКИ ДЛЯ РЕШЕНИЙ МНОГОМЕРНОЙ СМЕШАННОЙ ЗАДАЧИ ДЛЯ ОДНОГО КЛАССА НЕЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ТРЕТЬЕГО ПОРЯДКА

Authors

Aliyev Samed Jahangir oqlu,, Aliyeva Arzu Qambar qizi

Annotation

 Some a priori estimates in

                                       

 is obtained for all the possible almost everywhere  solutions of a multidimensional mixed problem under consideration.

Keywords

mixed problem
non-linear differential equation
a priori estimate

Authors

Aliyev Samed Jahangir oqlu,, Aliyeva Arzu Qambar qizi

References:

  1. Алиев С.Дж. О существовании в малом и единственности в целом решения почти всюду многомерной смешанной задачи для одного класса нелинейных дифференциальных уравнений третьего порядка. I // Вестник БГУ, серия физико-математических наук, 2003, №3, с.36-42.
  2. Алиев С.Дж. О глобальном существовании решения почти всюду многомерной смешанной задачи для одного класса нелинейных дифференциальных уравнений третьего порядка. II // Вестник БГУ, серия физико-математических наук, 2003, №4, с.35-43.
  3. Aliyev S.J., Aliyeva A.Q. The study of multidimensional mixed problem for one class of third order semilinear psevdohyperbolic equations // European Journal of Pure and Applied Mathematics, 2017, v.10, No5, p.1078-1091.
  4. Beckenbach E., Bellman R. Inequalities, Mir, 1965, 276 p.
  5. Худавердиев К.И., Алиев С.Дж. Многомерная смешанная задача для одного класса полулинейных псевдогиперболических уравнений третьего порядка. Баку: Азтехуниверситет,  2012, 252 с.

Other articles of the issue

cc-license