Academic publishing in Europe and N. America

Archive Publication ethics Submission Payment Contacts
In the original languageTranslation into English

ACTIVE BROADBAND PERFECT ABSORBER BASED ON PHASE CHANGE MATERIAL FOR SOLAR ENERGY HARVESTING

Authors

Yiming Huang

Rubric:Materials science
800
23
Download articleQuote
800
23

Annotation

In this paper, a wide-angle, polarization-independent broadband perfect absorber based on GeTe phase-change materials is reported. It is found that the bandwidth of the absorber reaches 600 nm, and the absorptivity is higher than 90%. Moreover, absorptivity in the range of 400 ~ 1000 nm is higher than 85% when the incident angle is increased from 0 to 40 degrees. Although the geometry size of the absorber is fixed, absorption bandwidth and absorptivity can still be actively adjusted by changing the phase-change degree. The underlying physical mechanism of this absorber is ascribed to the localized surface plasmon resonance of Ag nanopillars as well as the Fabry-Pérot (FP) resonance between GeTe and bottom Ag films. This proposed perfect absorber design has great potential in solar energy harvesting, etc

Keywords

perfect absorber
phase-change material
all-dielectric
tunable
broadband.

References:

1.         Qin, F.;  Chen, X.;  Yi, Z.;  Yao, W.;  Yang, H.;  Tang, Y.;  Yi, Y.;  Li, H.; Yi, Y., Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure. Solar Energy Materials and Solar Cells 2020, 211, 110535.

2.        Xiao, S.;  Wang, T.;  Liu, T.;  Zhou, C.;  Jiang, X.; Zhang, J., Active metamaterials and metadevices: a review. Journal of Physics D: Applied Physics 2020, 53 (50), 503002.

3.         Jahani, S.; Jacob, Z., All-dielectric metamaterials. Nature nanotechnology 2016, 11 (1), 23-36.

4.         Padilla, W. J.;  Basov, D. N.; Smith, D. R., Negative refractive index metamaterials. Materials Today 2006, 9 (7-8), 28-35.

5.         Wang, Q.;  Yuan, G. H.;  Kiang, K. S.;  Sun, K.;  Gholipour, B.;  Rogers, E. T. F.;  Huang, K.;  Ang, S. S.;  Zheludev, N. I.; Teng, J. H., Reconfigurable phase-change photomask for grayscale photolithography. Applied Physics Letters 2017, 110 (20), 201110.

6.         Karvounis, A.;  Gholipour, B.;  MacDonald, K. F.; Zheludev, N. I., All-dielectric phase-change reconfigurable metasurface. Applied Physics Letters 2016, 109 (5), 051103.

7.         Landy, N. I.;  Sajuyigbe, S.;  Mock, J. J.;  Smith, D. R.; Padilla, W. J., Perfect metamaterial absorber. Phys Rev Lett 2008, 100 (20), 207402.

8.         Pan, M.;  Su, Z.;  Yu, Z.;  Wu, P.;  Jile, H.;  Yi, Z.; Chen, Z., A narrowband perfect absorber with high Q-factor and its application in sensing in the visible region. Results Phys. 2020, 19.

9.         Liang, C.;  Yi, Z.;  Chen, X.;  Tang, Y.;  Yi, Y.;  Zhou, Z.;  Wu, X.;  Huang, Z.;  Yi, Y.; Zhang, G., Dual-Band Infrared Perfect Absorber Based on a Ag-Dielectric-Ag Multilayer Films with Nanoring Grooves Arrays. Plasmonics 2019, 15 (1), 93-100.

10.       Yi, Z.;  Liu, L.;  Wang, L.;  Cen, C.;  Chen, X.;  Zhou, Z.;  Ye, X.;  Yi, Y.;  Tang, Y.;  Yi, Y.; Wu, P., Tunable dual-band perfect absorber consisting of periodic cross-cross monolayer graphene arrays. Results Phys. 2019, 13, 102217.

11.       Gao, H.;  Peng, W.;  Liang, Y.;  Chu, S.;  Yu, L.;  Liu, Z.; Zhang, Y., Plasmonic Broadband Perfect Absorber for Visible Light Solar Cells Application. Plasmonics 2019, 15 (2), 573-580.

12.       Deng, H.;  Li, Z.;  Stan, L.;  Rosenmann, D.;  Czaplewski, D.;  Gao, J.; Yang, X., Broadband perfect absorber based on one ultrathin layer of refractory metal. Optics letters 2015, 40 (11), 2592-5.

13.       Mou, N.;  Liu, X.;  Wei, T.;  Dong, H.;  He, Q.;  Zhou, L.;  Zhang, Y.;  Zhang, L.; Sun, S., Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material. Nanoscale 2020, 12, 5374-5379.

14.       Huang, Y.;  Pu, M.;  Gao, P.;  Zhao, Z.;  Li, X.;  Ma, X.; Luo, X., Ultra-broadband large-scale infrared perfect absorber with optical transparency. Applied Physics Express 2017, 10 (11), 112601.

15.       Liu, Z.;  Zhong, H.;  Zhang, H.;  Huang, Z.;  Liu, G.;  Liu, X.;  Fu, G.; Tang, C., Silicon multi-resonant metasurface for full-spectrum perfect solar energy absorption. Sol. Energy 2020, 199, 360-365.

16.       Charola, S.;  Patel, S. K.;  Parmar, J.;  Ladumor, M.; Dhasarathan, V., Broadband graphene-based metasurface solar absorber. Microw Opt Technol Lett. 2020, 62 (3), 1366-1373.

17.       Lei, L.;  Li, S.;  Huang, H.;  Tao, K.; Xu, P., Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Optics express 2018, 26 (5), 5686-5693.

18.       Jalil, S. A.;  Lai, B.;  ElKabbash, M.;  Zhang, J.;  Garcell, E. M.;  Singh, S.; Guo, C., Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices. Light Sci Appl 2020, 9, 14.

19.       Luo, M.;  Shen, S.;  Zhou, L.;  Wu, S.;  Zhou, Y.; Chen, L., Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime. Optics express 2017, 25 (14), 16715-16724.

20.       Qi, B.;  Zhao, Y.;  Niu, T.; Mei, Z., Ultra-broadband metamaterial absorber based on all-metal nanostructures. Journal of Physics D: Applied Physics 2019, 52 (42), 425304.

21.       Cui, Y.;  Fung, K. H.;  Xu, J.;  Ma, H.;  Jin, Y.;  He, S.; Fang, N. X., Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab. Nano Lett. 2012, 12 (3), 1443-1447.

22.       Yin, X.;  Chen, L.; Li, X., Ultra-Broadband Super Light Absorber Based on Multi-Sized Tapered Hyperbolic Metamaterial Waveguide Arrays. J. Lightwave Technol. 2015, 33 (17), 3704-3710.

23.       Wuttig, M., Phase change materials: Chalcogenides with remarkable properties due to an unconventional bonding mechanism. physica status solidi (b) 2012, 249 (10), 1843-1850.

24.       Ielmini, D.; Lacaita, A. L., Phase change materials in non-volatile storage. Materials Today 2011, 14 (12), 600-607.

25.       Burr, G. W.;  Breitwisch, M. J.;  Franceschini, M.;  Garetto, D.;  Gopalakrishnan, K.;  Jackson, B.;  Kurdi, B.;  Lam, C.;  Lastras, L. A.;  Padilla, A.;  Rajendran, B.;  Raoux, S.; Shenoy, R. S., Phase change memory technology. J. Vac. Sci. Technol. B 2010, 28 (2), 223-262.

26.       Dong, W.;  Qiu, Y.;  Zhou, X.;  Banas, A.;  Banas, K.;  Breese, M. B. H.;  Cao, T.; Simpson, R. E., Tunable Mid-Infrared Phase-Change Metasurface. Advanced Optical Materials 2018, 6 (14), 1701346.

27.       Du, K.;  Cai, L.;  Luo, H.;  Lu, Y.;  Tian, J.;  Qu, Y.;  Ghosh, P.;  Lyu, Y.;  Cheng, Z.;  Qiu, M.; Li, Q., Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material. Nanoscale 2018, 10 (9), 4415-4420.

28.       Wang, J.;  Li, Q.;  Tao, S.;  Xia, Z.;  Li, Y.;  Liu, Y.;  Gu, Z.; Hu, C., Improving the reflectance and color contrasts of phase-change materials by vacancy reduction for optical-storage and display applications. Opt. Lett. 2020, 45 (1), 244-247.

29.       Jafari, M.;  Guo, L. J.; Rais‐Zadeh, M., A Reconfigurable Color Reflector by Selective Phase Change of GeTe in a Multilayer Structure. Advanced Optical Materials 2019, 7 (5), 1801214.

Other articles of the issue

Kristina Karapetyan, Avetis Tsaturyan, Ela Minasyan, Flora Tkhruni, Tsovinar Balabekyan L-ARGININE SYNTHESIS BY LACTIC ACID BACTERIA
Download article in PDF3-11 pages835 views
cc-license
About us Journals Books
Publication ethics Terms of use of services Privacy policy
Copyright 2013-2024 Premier Publishing s.r.o.
Praha 8 - Karlín, Lyčkovo nám. 508/7, PSČ 18600, Czech Republic pub@ppublishing.org