In the original languageTranslation into English

ACTIVE BROADBAND PERFECT ABSORBER BASED ON PHASE CHANGE MATERIAL FOR SOLAR ENERGY HARVESTING

Annotation

In this paper, a wide-angle, polarization-independent broadband perfect absorber based on GeTe phase-change materials is reported. It is found that the bandwidth of the absorber reaches 600 nm, and the absorptivity is higher than 90%. Moreover, absorptivity in the range of 400 ~ 1000 nm is higher than 85% when the incident angle is increased from 0 to 40 degrees. Although the geometry size of the absorber is fixed, absorption bandwidth and absorptivity can still be actively adjusted by changing the phase-change degree. The underlying physical mechanism of this absorber is ascribed to the localized surface plasmon resonance of Ag nanopillars as well as the Fabry-Pérot (FP) resonance between GeTe and bottom Ag films. This proposed perfect absorber design has great potential in solar energy harvesting, etc

Keywords

perfect absorber
phase-change material
all-dielectric
tunable
broadband.

References:

1.         Qin, F.;  Chen, X.;  Yi, Z.;  Yao, W.;  Yang, H.;  Tang, Y.;  Yi, Y.;  Li, H.; Yi, Y., Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure. Solar Energy Materials and Solar Cells 2020, 211, 110535.

2.        Xiao, S.;  Wang, T.;  Liu, T.;  Zhou, C.;  Jiang, X.; Zhang, J., Active metamaterials and metadevices: a review. Journal of Physics D: Applied Physics 2020, 53 (50), 503002.

3.         Jahani, S.; Jacob, Z., All-dielectric metamaterials. Nature nanotechnology 2016, 11 (1), 23-36.

4.         Padilla, W. J.;  Basov, D. N.; Smith, D. R., Negative refractive index metamaterials. Materials Today 2006, 9 (7-8), 28-35.

5.         Wang, Q.;  Yuan, G. H.;  Kiang, K. S.;  Sun, K.;  Gholipour, B.;  Rogers, E. T. F.;  Huang, K.;  Ang, S. S.;  Zheludev, N. I.; Teng, J. H., Reconfigurable phase-change photomask for grayscale photolithography. Applied Physics Letters 2017, 110 (20), 201110.

6.         Karvounis, A.;  Gholipour, B.;  MacDonald, K. F.; Zheludev, N. I., All-dielectric phase-change reconfigurable metasurface. Applied Physics Letters 2016, 109 (5), 051103.

7.         Landy, N. I.;  Sajuyigbe, S.;  Mock, J. J.;  Smith, D. R.; Padilla, W. J., Perfect metamaterial absorber. Phys Rev Lett 2008, 100 (20), 207402.

8.         Pan, M.;  Su, Z.;  Yu, Z.;  Wu, P.;  Jile, H.;  Yi, Z.; Chen, Z., A narrowband perfect absorber with high Q-factor and its application in sensing in the visible region. Results Phys. 2020, 19.

9.         Liang, C.;  Yi, Z.;  Chen, X.;  Tang, Y.;  Yi, Y.;  Zhou, Z.;  Wu, X.;  Huang, Z.;  Yi, Y.; Zhang, G., Dual-Band Infrared Perfect Absorber Based on a Ag-Dielectric-Ag Multilayer Films with Nanoring Grooves Arrays. Plasmonics 2019, 15 (1), 93-100.

10.       Yi, Z.;  Liu, L.;  Wang, L.;  Cen, C.;  Chen, X.;  Zhou, Z.;  Ye, X.;  Yi, Y.;  Tang, Y.;  Yi, Y.; Wu, P., Tunable dual-band perfect absorber consisting of periodic cross-cross monolayer graphene arrays. Results Phys. 2019, 13, 102217.

11.       Gao, H.;  Peng, W.;  Liang, Y.;  Chu, S.;  Yu, L.;  Liu, Z.; Zhang, Y., Plasmonic Broadband Perfect Absorber for Visible Light Solar Cells Application. Plasmonics 2019, 15 (2), 573-580.

12.       Deng, H.;  Li, Z.;  Stan, L.;  Rosenmann, D.;  Czaplewski, D.;  Gao, J.; Yang, X., Broadband perfect absorber based on one ultrathin layer of refractory metal. Optics letters 2015, 40 (11), 2592-5.

13.       Mou, N.;  Liu, X.;  Wei, T.;  Dong, H.;  He, Q.;  Zhou, L.;  Zhang, Y.;  Zhang, L.; Sun, S., Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material. Nanoscale 2020, 12, 5374-5379.

14.       Huang, Y.;  Pu, M.;  Gao, P.;  Zhao, Z.;  Li, X.;  Ma, X.; Luo, X., Ultra-broadband large-scale infrared perfect absorber with optical transparency. Applied Physics Express 2017, 10 (11), 112601.

15.       Liu, Z.;  Zhong, H.;  Zhang, H.;  Huang, Z.;  Liu, G.;  Liu, X.;  Fu, G.; Tang, C., Silicon multi-resonant metasurface for full-spectrum perfect solar energy absorption. Sol. Energy 2020, 199, 360-365.

16.       Charola, S.;  Patel, S. K.;  Parmar, J.;  Ladumor, M.; Dhasarathan, V., Broadband graphene-based metasurface solar absorber. Microw Opt Technol Lett. 2020, 62 (3), 1366-1373.

17.       Lei, L.;  Li, S.;  Huang, H.;  Tao, K.; Xu, P., Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Optics express 2018, 26 (5), 5686-5693.

18.       Jalil, S. A.;  Lai, B.;  ElKabbash, M.;  Zhang, J.;  Garcell, E. M.;  Singh, S.; Guo, C., Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices. Light Sci Appl 2020, 9, 14.

19.       Luo, M.;  Shen, S.;  Zhou, L.;  Wu, S.;  Zhou, Y.; Chen, L., Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime. Optics express 2017, 25 (14), 16715-16724.

20.       Qi, B.;  Zhao, Y.;  Niu, T.; Mei, Z., Ultra-broadband metamaterial absorber based on all-metal nanostructures. Journal of Physics D: Applied Physics 2019, 52 (42), 425304.

21.       Cui, Y.;  Fung, K. H.;  Xu, J.;  Ma, H.;  Jin, Y.;  He, S.; Fang, N. X., Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab. Nano Lett. 2012, 12 (3), 1443-1447.

22.       Yin, X.;  Chen, L.; Li, X., Ultra-Broadband Super Light Absorber Based on Multi-Sized Tapered Hyperbolic Metamaterial Waveguide Arrays. J. Lightwave Technol. 2015, 33 (17), 3704-3710.

23.       Wuttig, M., Phase change materials: Chalcogenides with remarkable properties due to an unconventional bonding mechanism. physica status solidi (b) 2012, 249 (10), 1843-1850.

24.       Ielmini, D.; Lacaita, A. L., Phase change materials in non-volatile storage. Materials Today 2011, 14 (12), 600-607.

25.       Burr, G. W.;  Breitwisch, M. J.;  Franceschini, M.;  Garetto, D.;  Gopalakrishnan, K.;  Jackson, B.;  Kurdi, B.;  Lam, C.;  Lastras, L. A.;  Padilla, A.;  Rajendran, B.;  Raoux, S.; Shenoy, R. S., Phase change memory technology. J. Vac. Sci. Technol. B 2010, 28 (2), 223-262.

26.       Dong, W.;  Qiu, Y.;  Zhou, X.;  Banas, A.;  Banas, K.;  Breese, M. B. H.;  Cao, T.; Simpson, R. E., Tunable Mid-Infrared Phase-Change Metasurface. Advanced Optical Materials 2018, 6 (14), 1701346.

27.       Du, K.;  Cai, L.;  Luo, H.;  Lu, Y.;  Tian, J.;  Qu, Y.;  Ghosh, P.;  Lyu, Y.;  Cheng, Z.;  Qiu, M.; Li, Q., Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material. Nanoscale 2018, 10 (9), 4415-4420.

28.       Wang, J.;  Li, Q.;  Tao, S.;  Xia, Z.;  Li, Y.;  Liu, Y.;  Gu, Z.; Hu, C., Improving the reflectance and color contrasts of phase-change materials by vacancy reduction for optical-storage and display applications. Opt. Lett. 2020, 45 (1), 244-247.

29.       Jafari, M.;  Guo, L. J.; Rais‐Zadeh, M., A Reconfigurable Color Reflector by Selective Phase Change of GeTe in a Multilayer Structure. Advanced Optical Materials 2019, 7 (5), 1801214.

Other articles of the issue

cc-license