ACTIVE BROADBAND PERFECT ABSORBER BASED ON PHASE CHANGE MATERIAL FOR SOLAR ENERGY HARVESTING
Authors
Yiming Huang
Share
Annotation
In this paper, a wide-angle, polarization-independent broadband perfect absorber based on GeTe phase-change materials is reported. It is found that the bandwidth of the absorber reaches 600 nm, and the absorptivity is higher than 90%. Moreover, absorptivity in the range of 400 ~ 1000 nm is higher than 85% when the incident angle is increased from 0 to 40 degrees. Although the geometry size of the absorber is fixed, absorption bandwidth and absorptivity can still be actively adjusted by changing the phase-change degree. The underlying physical mechanism of this absorber is ascribed to the localized surface plasmon resonance of Ag nanopillars as well as the Fabry-Pérot (FP) resonance between GeTe and bottom Ag films. This proposed perfect absorber design has great potential in solar energy harvesting, etc
Keywords
Authors
Yiming Huang
Share
References:
1. Qin, F.; Chen, X.; Yi, Z.; Yao, W.; Yang, H.; Tang, Y.; Yi, Y.; Li, H.; Yi, Y., Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure. Solar Energy Materials and Solar Cells 2020, 211, 110535.
2. Xiao, S.; Wang, T.; Liu, T.; Zhou, C.; Jiang, X.; Zhang, J., Active metamaterials and metadevices: a review. Journal of Physics D: Applied Physics 2020, 53 (50), 503002.
3. Jahani, S.; Jacob, Z., All-dielectric metamaterials. Nature nanotechnology 2016, 11 (1), 23-36.
4. Padilla, W. J.; Basov, D. N.; Smith, D. R., Negative refractive index metamaterials. Materials Today 2006, 9 (7-8), 28-35.
5. Wang, Q.; Yuan, G. H.; Kiang, K. S.; Sun, K.; Gholipour, B.; Rogers, E. T. F.; Huang, K.; Ang, S. S.; Zheludev, N. I.; Teng, J. H., Reconfigurable phase-change photomask for grayscale photolithography. Applied Physics Letters 2017, 110 (20), 201110.
6. Karvounis, A.; Gholipour, B.; MacDonald, K. F.; Zheludev, N. I., All-dielectric phase-change reconfigurable metasurface. Applied Physics Letters 2016, 109 (5), 051103.
7. Landy, N. I.; Sajuyigbe, S.; Mock, J. J.; Smith, D. R.; Padilla, W. J., Perfect metamaterial absorber. Phys Rev Lett 2008, 100 (20), 207402.
8. Pan, M.; Su, Z.; Yu, Z.; Wu, P.; Jile, H.; Yi, Z.; Chen, Z., A narrowband perfect absorber with high Q-factor and its application in sensing in the visible region. Results Phys. 2020, 19.
9. Liang, C.; Yi, Z.; Chen, X.; Tang, Y.; Yi, Y.; Zhou, Z.; Wu, X.; Huang, Z.; Yi, Y.; Zhang, G., Dual-Band Infrared Perfect Absorber Based on a Ag-Dielectric-Ag Multilayer Films with Nanoring Grooves Arrays. Plasmonics 2019, 15 (1), 93-100.
10. Yi, Z.; Liu, L.; Wang, L.; Cen, C.; Chen, X.; Zhou, Z.; Ye, X.; Yi, Y.; Tang, Y.; Yi, Y.; Wu, P., Tunable dual-band perfect absorber consisting of periodic cross-cross monolayer graphene arrays. Results Phys. 2019, 13, 102217.
11. Gao, H.; Peng, W.; Liang, Y.; Chu, S.; Yu, L.; Liu, Z.; Zhang, Y., Plasmonic Broadband Perfect Absorber for Visible Light Solar Cells Application. Plasmonics 2019, 15 (2), 573-580.
12. Deng, H.; Li, Z.; Stan, L.; Rosenmann, D.; Czaplewski, D.; Gao, J.; Yang, X., Broadband perfect absorber based on one ultrathin layer of refractory metal. Optics letters 2015, 40 (11), 2592-5.
13. Mou, N.; Liu, X.; Wei, T.; Dong, H.; He, Q.; Zhou, L.; Zhang, Y.; Zhang, L.; Sun, S., Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material. Nanoscale 2020, 12, 5374-5379.
14. Huang, Y.; Pu, M.; Gao, P.; Zhao, Z.; Li, X.; Ma, X.; Luo, X., Ultra-broadband large-scale infrared perfect absorber with optical transparency. Applied Physics Express 2017, 10 (11), 112601.
15. Liu, Z.; Zhong, H.; Zhang, H.; Huang, Z.; Liu, G.; Liu, X.; Fu, G.; Tang, C., Silicon multi-resonant metasurface for full-spectrum perfect solar energy absorption. Sol. Energy 2020, 199, 360-365.
16. Charola, S.; Patel, S. K.; Parmar, J.; Ladumor, M.; Dhasarathan, V., Broadband graphene-based metasurface solar absorber. Microw Opt Technol Lett. 2020, 62 (3), 1366-1373.
17. Lei, L.; Li, S.; Huang, H.; Tao, K.; Xu, P., Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Optics express 2018, 26 (5), 5686-5693.
18. Jalil, S. A.; Lai, B.; ElKabbash, M.; Zhang, J.; Garcell, E. M.; Singh, S.; Guo, C., Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices. Light Sci Appl 2020, 9, 14.
19. Luo, M.; Shen, S.; Zhou, L.; Wu, S.; Zhou, Y.; Chen, L., Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime. Optics express 2017, 25 (14), 16715-16724.
20. Qi, B.; Zhao, Y.; Niu, T.; Mei, Z., Ultra-broadband metamaterial absorber based on all-metal nanostructures. Journal of Physics D: Applied Physics 2019, 52 (42), 425304.
21. Cui, Y.; Fung, K. H.; Xu, J.; Ma, H.; Jin, Y.; He, S.; Fang, N. X., Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab. Nano Lett. 2012, 12 (3), 1443-1447.
22. Yin, X.; Chen, L.; Li, X., Ultra-Broadband Super Light Absorber Based on Multi-Sized Tapered Hyperbolic Metamaterial Waveguide Arrays. J. Lightwave Technol. 2015, 33 (17), 3704-3710.
23. Wuttig, M., Phase change materials: Chalcogenides with remarkable properties due to an unconventional bonding mechanism. physica status solidi (b) 2012, 249 (10), 1843-1850.
24. Ielmini, D.; Lacaita, A. L., Phase change materials in non-volatile storage. Materials Today 2011, 14 (12), 600-607.
25. Burr, G. W.; Breitwisch, M. J.; Franceschini, M.; Garetto, D.; Gopalakrishnan, K.; Jackson, B.; Kurdi, B.; Lam, C.; Lastras, L. A.; Padilla, A.; Rajendran, B.; Raoux, S.; Shenoy, R. S., Phase change memory technology. J. Vac. Sci. Technol. B 2010, 28 (2), 223-262.
26. Dong, W.; Qiu, Y.; Zhou, X.; Banas, A.; Banas, K.; Breese, M. B. H.; Cao, T.; Simpson, R. E., Tunable Mid-Infrared Phase-Change Metasurface. Advanced Optical Materials 2018, 6 (14), 1701346.
27. Du, K.; Cai, L.; Luo, H.; Lu, Y.; Tian, J.; Qu, Y.; Ghosh, P.; Lyu, Y.; Cheng, Z.; Qiu, M.; Li, Q., Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material. Nanoscale 2018, 10 (9), 4415-4420.
28. Wang, J.; Li, Q.; Tao, S.; Xia, Z.; Li, Y.; Liu, Y.; Gu, Z.; Hu, C., Improving the reflectance and color contrasts of phase-change materials by vacancy reduction for optical-storage and display applications. Opt. Lett. 2020, 45 (1), 244-247.
29. Jafari, M.; Guo, L. J.; Rais‐Zadeh, M., A Reconfigurable Color Reflector by Selective Phase Change of GeTe in a Multilayer Structure. Advanced Optical Materials 2019, 7 (5), 1801214.