Virtual Screening of Acetylcholinesterase-centered Inhibitors as Potential Therapies for Alzheimer’s Disease
Authors
Benjamin Liu

Share
Annotation
Acetylcholinesterase inhibitors(AChE-Is) are currently one of the most popular treatments for Alzheimer’s disease(AD). Despite their proven effectiveness in easing symptoms of cognitive decline, their limited efficacy and strong adverse side effects demand the urgent need to develop better treatment for AD patients. This study explores a new series of ligands targeted towards inhibiting AChE as an anti-AD drug. Findings from various binding site detection methods, such as geometric, machine learning, and energetic-based methods, showed that AChE is a suitable binding target for ligands. The research utilized ZINCPharmer to identify compounds with good binding interactions with different pharmacophore maps of AChE. Molecular docking using SwissDock revealed multiple ligands with an impressive SwissParam score range of -7.2 to -8.9 kcal/mol, confirming their strong binding interaction with AChE binding sites. The top compounds were tested for their absorption, distribution, metabolism, and excretion(ADME) using SwissADME. Three promising compounds L_6(ZINC12232928), L_7(ZINC92176885), and L_9(ZINC92189850) were able to cross the Blood Brain Barrier while adhering to Lipinski’s rule. The toxicity of the compounds was also examined using a computational prediction tool ProTox 3.0. Most compounds have acceptable toxicity, with compound L_18(ZINC03302264) having the best predicted LD50 of 5240 mg/kg and predicted toxicity class 6. Finally, ligands L_7 and L_9 are the most promising candidates as potential lead compounds for future AChE-I studies as they maintained excellent results in all experiments.
Keywords
Authors
Benjamin Liu

Share
References:
Abuelezz, Nermeen & Nasr, Fayza & AbdulKader, Mohammad & Bassiouny, Ahmad & Zaky, Amira. (2021). MicroRNAs as Potential Orchestrators of Alzheimer's Disease-Related Pathologies: Insights on Current Status and Future Possibilities. Frontiers in Aging Neuroscience. 13. 743573. 10.3389/fnagi.2021.743573.
Agu, P.C., Afiukwa, C.A., Orji, O.U. et al. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep 13, 13398 (2023). https://doi.org/10.1038/s41598-023-40160-2
Banerjee P., Kemmler E., Dunkel M., Preissner R.: ProTox 3.0: a webserver for the prediction of toxicity of chemicals Nucleic Acids Research, Volume 52, Issue W1, 5 July 2024, Pages W513–W520, https://doi.org/10.1093/nar/gkae303
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Research. 2000 Jan 1;28(1):235-42. doi: 10.1093/nar/28.1.235. PMID: 10592235; PMCID: PMC102472.
Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer's Disease: Causes and Treatment. Molecules. 2020 Dec 8;25(24):5789. doi: 10.3390/molecules25245789. PMID: 33302541; PMCID: PMC7764106.
Brenke R, Kozakov D, Chuang GY, Beglov D, Hall D, Landon MR, Mattos C, Vajda S. Fragment-based identification of druggable 'hot spots' of proteins using Fourier domain correlation techniques. Bioinformatics. 2009 Mar 1
Bugnon M, Röhrig UF, Goullieux M, Perez MAS, Daina A, Michielin O, Zoete V. SwissDock 2024: major enhancements for small-molecule docking with Attracting Cavities and AutoDock Vina. Nucleic Acids Research. 2024 Jul 5;52(W1):W324-W332
Chen ZR, Huang JB, Yang SL, Hong FF. Role of Cholinergic Signaling in Alzheimer's Disease. Molecules. 2022 Mar 10;27(6):1816. doi: 10.3390/molecules27061816. PMID: 35335180; PMCID: PMC8949236.
Daina, A., Michielin, O. & Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7, 42717 (2017). https://doi.org/10.1038/srep42717
Dávid Jakubec, Petr Škoda, Radoslav Krivák, Marian Novotný and David Hoksza. PrankWeb 3: accelerated ligand-binding site predictions for experimental and modelled protein structures. Nucleic Acids Research. May 2022
Dementia medication side effects. Alzheimer’s Society. (n.d.). Retrieved from https://www.alzheimers.org.uk/about-dementia/treatments/dementia-medication/dementia-medication-side-effects Accessed 13 June 2024
Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer's disease: Targeting the Cholinergic System. Curr Neuropharmacol. 2016;14(1):101-15. doi: 10.2174/1570159x13666150716165726. PMID: 26813123; PMCID: PMC4787279.
Grossberg GT. Cholinesterase inhibitors for the treatment of Alzheimer's disease: getting on and staying on. Curr Ther Res Clin Exp. 2003 Apr;64(4):216-35. doi: 10.1016/S0011-393X(03)00059-6. PMID: 24944370; PMCID: PMC4052996.
Kozakov D, Grove LE, Hall DR, Bohnuud T, Mottarella SE, Luo L, Xia B, Beglov D, Vajda S The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nature Protocols 2015 10(5):733-755.
Lukáš Jendele and Radoslav Krivák and Petr Škoda and Marian Novotný and David Hoksza. PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Research. May 2019
Marešová P, Dolejs J, Mohelska H, Bryan LK. Cost of Treatment and Care for People with Alzheimer's Disease: A Meta-Analysis. Curr Alzheimer Res. 2019;16(14):1245-1253. doi: 10.2174/1567205017666200102144640. PMID: 31894748.
McDade E, Cummings JL, Dhadda S, Swanson CJ, Reyderman L, Kanekiyo M, Koyama A, Irizarry M, Kramer LD, Bateman RJ. Lecanemab in patients with early Alzheimer's disease: detailed results on biomarker, cognitive, and clinical effects from the randomized and open-label extension of the phase 2 proof-of-concept study. Alzheimers Res Ther. 2022 Dec 21;14(1):191. doi: 10.1186/s13195-022-01124-2. PMID: 36544184; PMCID: PMC9768996.
Moustafa T. Gabr, Mohammed S. Abdel-Raziq, Design and synthesis of donepezil analogues as dual AChE and BACE-1 inhibitors. Bioorganic Chemistry, Volume 80, 2018, Pages 245-252, ISSN 0045-2068
Murphy MP, LeVine H 3rd. Alzheimer's disease and the amyloid-beta peptide. J Alzheimers Dis. 2010;19(1):311-23. doi: 10.3233/JAD-2010-1221. PMID: 20061647; PMCID: PMC2813509.Professional, Cleveland Clinic medical. “Acetylcholine (ACH): What It Is, Function & Deficiency.” Cleveland Clinic, my.clevelandclinic.org/health/articles/24568-acetylcholine-ach. Accessed 13 June 2024.
Ngan CH, Hall DR, Zerbe BS, Grove LE, Kozakov D, Vajda S FTSite: high accuracy detection of ligand binding sites on unbound protein structures. Bioinformatics 2012 28: 286-287.
Radoslav Krivák and David Hoksza. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. Journal of Cheminformatics. Aug 2018
Ricciarelli R, Fedele E. The Amyloid Cascade Hypothesis in Alzheimer's Disease: It's Time to Change Our Mind. Curr Neuropharmacol. 2017;15(6):926-935. doi: 10.2174/1570159X15666170116143743. PMID: 28093977; PMCID: PMC5652035.
Röhrig UF, Goullieux M, Bugnon M, Zoete V. Attracting Cavities 2.0: improving the flexibility and robustness for small-molecule docking. J. Chem. Inf. Model., 2023
Sam C, Bordoni B. Physiology, Acetylcholine. [Updated 2023 Apr 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557825/
Shoaib Manzoor, Moustafa T. Gabr, Bisma Rasool, Kavita Pal, Nasimul Hoda, Dual targeting of acetylcholinesterase and tau aggregation: Design, synthesis and evaluation of multifunctional deoxyvasicinone analogues for Alzheimer’s disease. Bioorganic Chemistry, Volume 116, 2021, 105354, ISSN 0045-2068
Stanciu GD, Luca A, Rusu RN, Bild V, Beschea Chiriac SI, Solcan C, Bild W, Ababei DC. Alzheimer’s Disease Pharmacotherapy in Relation to Cholinergic System Involvement. Biomolecules. 2020; 10(1):40. https://doi.org/10.3390/biom10010040
Tahami Monfared AA, Byrnes MJ, White LA, Zhang Q. The Humanistic and Economic Burden of Alzheimer's Disease. Neurol Ther. 2022 Jun;11(2):525-551. doi: 10.1007/s40120-022-00335-x. Epub 2022 Feb 22. PMID: 35192176; PMCID: PMC9095804.
Tansey EM. Henry Dale and the discovery of acetylcholine. C R Biol. 2006 May-Jun;329(5-6):419-25. doi: 10.1016/j.crvi.2006.03.012. Epub 2006 May 2. PMID: 16731499.
Van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, Kanekiyo M, Li D, Reyderman L, Cohen S, Froelich L, Katayama S, Sabbagh M, Vellas B, Watson D, Dhadda S, Irizarry M, Kramer LD, Iwatsubo T. Lecanemab in Early Alzheimer's Disease. N Engl J Med. 2023 Jan 5;388(1):9-21. doi: 10.1056/NEJMoa2212948. Epub 2022 Nov 29. PMID: 36449413.
Volkamer, A.; Griewel, A.; Grombacher, T.; Rarey, M., Analyzing the topology of active sites: on the prediction of pockets and subpockets. J Chem Inf Model 2010, 50 (11), 2041-52. DOI: https://doi.org/10.1021/ci100241y
Volkamer, A.; Kuhn, D.; Grombacher, T.; Rippmann, F.; Rarey, M., Combining global and local measures for structure-based druggability predictions. J Chem Inf Model 2012, 52 (2), 360-72. DOI: https://doi.org/10.1021/ci200454v
Zou D, Liu R, Lv Y, Guo J, Zhang C, Xie Y. Latest advances in dual inhibitors of acetylcholinesterase and monoamine oxidase B against Alzheimer's disease. J Enzyme Inhib Med Chem. 2023 Dec;38(1):2270781. doi: 10.1080/14756366.2023.2270781. Epub 2023 Nov 13. PMID: 37955252; PMCID: PMC10653629.
FDA Converts Novel Alzheimer’s Disease Treatment to Traditional Approval. Retrieved from https://www.fda.gov/news-events/press-announcements/fda-converts-novel-alzheimers-disease-treatment-traditional-approval. Accessed 17 June 2024.
Proteins Plus. Retrieved from https://proteins.plus/3lii. Accessed June 18 2024
Prankweb. Retrieved from https://prankweb.cz/viewer?id=3lii&database=v3-conservation-hmm. Accessed June 18 2024
FTSite. Retrieved from https://ftsite.bu.edu/. Accessed June 18 2024
SwissDock. Retrieved from https://www.swissdock.ch/. Accessed July 9 2024
SwissADME. Retrieved from http://www.swissadme.ch/. Accessed July 16 2024
ProTox. Retrieved from https://tox.charite.de/protox3/index.php?site=home. Accessed July 23 2024