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Abstract
Acetylcholinesterase inhibitors(AChE-Is) are currently one of the most popular treatments 

for Alzheimer’s disease(AD). Despite their proven effectiveness in easing symptoms of cognitive 
decline, their limited efficacy and strong adverse side effects demand the urgent need to develop 
better treatment for AD patients. This study explores a new series of ligands targeted towards 
inhibiting AChE as an anti-AD drug. Findings from various binding site detection methods, 
such as geometric, machine learning, and energetic-based methods, showed that AChE is a 
suitable binding target for ligands. The research utilized ZINCPharmer to identify compounds 
with good binding interactions with different pharmacophore maps of AChE. Molecular docking 
using SwissDock revealed multiple ligands with an impressive SwissParam score range of –  
7.2 to –8.9 kcal/mol, confirming their strong binding interaction with AChE binding sites. 
The top compounds were tested for their absorption, distribution, metabolism, and ex-
cretion(ADME) using SwissADME. Three promising compounds L_6(ZINC12232928), 
L_7(ZINC92176885), and L_9(ZINC92189850) were able to cross the Blood Brain Barrier 
while adhering to Lipinski’s rule. The toxicity of the compounds was also examined using a 
computational prediction tool ProTox 3.0. Most compounds have acceptable toxicity, with com-
pound L_18(ZINC03302264) having the best predicted LD50 of 5240 mg/kg and predicted tox-
icity class 6. Finally, ligands L_7 and L_9 are the most promising candidates as potential lead 
compounds for future AChE-I studies as they maintained excellent results in all experiments.
Keywords: Alzheimer’s Disease, Acetylcholinesterase, Virtual Screening, Drug Discovery, 
Therapeutics

Introduction
Alzheimer’s disease (AD) is a progressive 

neurodegenerative disease characterized by 

memory loss, cognitive deficit, and difficul-
ties conducting personal daily activities. It is 
the main cause of dementia, accounting for 
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60–70% of the 50 million cases worldwide. It 
is estimated that there are around 50 million 
AD patients worldwide, and the numbers are 
projected to increase to 152 million by 2050 
(Breijyeh et al., 2020; Chen et al, 2022). A me-
ta-analysis of treatment costs for Alzheimer’s 
disease estimates that the total costs per pa-
tient per year determined by the meta-anal-
ysis is $20,461(Marešová et al, 2019). These 
studies emphasize the severity of the physical 
and mental toll and the financial burden on 
the patients and their families, demonstrat-
ing the urgent need for improved treatment 
for the disease (Tahami et al, 2022).

Although the trigger and driving force be-
hind the progression of AD remain unclear, 
two main hypotheses have been proposed: the 
cholinergic hypothesis and the amyloid hy-
pothesis. The cholinergic hypothesis attributes 
the cause of AD to the degeneration of cholin-
ergic neurons, neurons that use and synthesize 
acetylcholine (ACh) (Stanciu et al, 2020).

ACh, first discovered in 1913 (Tansey, 
2006), is an excitatory neurotransmitter 
involved in several physiological process-
es such as memory, learning, attention, 
arousal, and involuntary muscle movement 
(Sam et al, 2024). Due to its important role 
in cognition, the deficiency of ACh and the 

cholinergic neurons is considered to play a 
significant role in the pathogenesis of AD 
(Ferreira-Vieira et al, 2016). ACh is syn-
thesized by an enzyme called choline acet-
yltransferase (ChAT), which causes a reac-
tion between choline and the acetyl group to 
create acetylcholine. To transmit chemical 
messages across nerve cells, ACh binds to 
two types of receptors: nicotinic receptors 
and muscarinic receptors. To repeat the 
process, ACh is broken down by the enzyme 
acetylcholinesterase (AChE) in the synapse 
into choline and acetate, which can then be 
reused. These compounds are reabsorbed 
and recycled to be reused in transmitting 
additional chemical messages (Cleveland 
Clinic Medical, n.d.).

The amyloid hypothesis attributes the 
cause of AD to the buildup of amyloid-β (Aβ) 
plaque in the brain parenchyma and the cere-
bral vasculature (Ricciarelli et al, 2017). Al-
though amyloid plaques are found in healthy 
brains, the human body’s ability to properly 
break down Aβ decreases with age or patho-
logical conditions, thus leading to abnormal 
accumulation of Aβ peptides. As a result, 
the buildup creates neurotoxicity and causes 
neuronal cell death and neurodegeneration 
(Murphy et al, 2010).

Figure 1. Illustration of the Cholinergic, Amyloid, Mitochondrial, 
 Inflammation, and Tau Hypothesis of AD (Abuelezz et al, 2021)
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Currently, there are only two types of 
drugs approved to treat Alzheimer’s disease 
(AD). The most common type includes cho-
linesterase inhibitors, and the other type 
consists of N-methyl D-aspartate (NMDA) 
receptor antagonists such as memantine 
(Breijyeh, 2020). Recent clinical data has 
shown that the brains of patients with AD 
show severe damage to cholinergic neurons, 
a decrease in ACh levels, and reduced ChAT 
activity (Chen, 2022). Acetylcholinesterase 
inhibitors (AChE-Is) help restore cholin-
ergic functions by blocking the breakdown 
of ACh by AChE and butyrylcholinesterase 
(BChE), which increase the ACh levels in the 
synaptic cleft. Currently, the three most used 
Food-and-Drug-Administration(FDA)-ap-
proved AChE-Is are donepezil, galantamine, 
and rivastigmine. All three types showed 
their ability to improve AD symptoms. How-
ever, rivastigmine has stood out as the most 
promising drug, with the most desirable safe-
ty, tolerability, and efficacy profile, likely due 
to its ability to inhibit both AChE and BChE 
(Grossberg, 2003). In July 2023, the FDA 
approved lecanemab, a new monoclonal an-
tibody. A clinical trial demonstrated that le-
canemab effectively removed Aβ plaques in 
early Alzheimer’s disease and showed mod-
erate success in reducing cognitive decline​ 
(Van Dyck et al, 2023). Despite showing fa-
vorable results, these drugs are associated 
with adverse side effects such as loss of ap-
petite, diarrhea or vomiting, headaches, feel-
ing tired or dizzy, and difficulty sleeping well 
(“Dementia Medication”, n.d.). Therefore, 
further research is needed to develop new 
compounds that minimize these side effects.

Literature review
To tackle the complex multifactorial 

pathogenesis of AD, recent AChE-Is devel-
opment focused on the multi-target-direct-
ed ligands (MTDLs) strategy which emerges 
as an advantageous approach compared to 
combination therapy, which involves using 
multiple medications to treat a single dis-
ease. The MTDL strategy demonstrated its 
potential by effectively addressing multiple 
pathological pathways using a single med-
ication, offering additional benefits. These 
include avoiding potential risks from drug-
drug interactions, reducing the likelihood 

of worsening side effects, and providing a 
more convenient dosing regimen (Zou et al, 
2023). Although the resulting compounds 
in this study are not experimented to be 
multi-targeted, they are strong starting 
points for the future development of this ad-
vantageous anti-AD therapy.

Dual AChE and MAO-B inhibitors
Despite AChE being the primary target in 

AD drug development, the discovery of overex-
pression of monoamine oxidase B (MAO-B) in 
the brains of AD patients has identified it as an-
other promising enzyme target for AD therapy. 
To discover, design, and screen for AChE and 
MAO-B dual inhibitors, the research utilized 
nanotechnology and computer-aided drug de-
sign (CADD) and incorporated the pharmaco-
phores of anti-AD molecules or drugs. Inhib-
itors such as chalcone, coumarin, chromone, 
benzo five-membered ring, imine, and hydra-
zone scaffolds were systematically classified 
based on their structure and analyzed by their 
design strategies, docking studies, and struc-
ture-activity relationships (SARs). While dual 
AChE and MAO-B inhibitors have strong po-
tential to provide significant treatment to AD, 
there are limiting factors to overcome while 
developing such inhibitors. One limitation is 
the structural difference between the catalytic 
anionic site (CAS) of AChE and the active sites 
of MAO-B. This structural difference makes it 
extremely difficult to discover effective dual 
inhibitors for AChE and MAO-B, as both en-
zymes often cannot share the same pharmaco-
phores (Zou et al, 2023).

Dual AChE and BACE-1 inhibitors
A new series of multi-targeted donepe-

zil analogues as dual AChE and β-secretase 
1 (BACE-1) inhibitors have been designed, 
synthesized, and evaluated. This new design 
targets both cholinergic dysfunction and am-
yloid-β plaque formation and is achieved by 
introducing backbone amide linkers to en-
hance BACE-1 inhibition and reduce extracel-
lular cleavage of the amyloid precursor protein 
(APP). Molecular docking studies confirm the 
analogues’ capability to inhibit both AChE 
and BACE-1. Additionally, in vitro cytotoxic-
ity testing on SH-SY5Y neuroblastoma cells 
showed that the new analogues exhibited tol-
erable toxicity levels and did not negatively 
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impact cell viability compared to the controls. 
Furthermore, the analogues demonstrated 
passive permeability of the blood-brain barrier 
(BBB) comparable to donepezil, as measured 
by the parallel artificial membrane permea-
bility assay for BBB (PAMPA-BBB). These en-
couraging results, particularly with compound 
4, highlight the strong potential of these com-
pounds as strong candidates for further thera-
peutic development (Moustafa et al, 2018).

Dual Targeting of AChE 
and Tau Aggregation

In search for inhibitors of AChE, BACE1, 
Aβ1-42 fibrillation, tau aggregation, and α-syn 
aggregation, deoxyvasicinone analogues are 
designed, synthesized, and evaluated as po-
tential multi-targeted therapy for AD. The 
research utilized a pharmacophore combina-
tion strategy to design new MTDLs. The com-
pounds were then screened using biological 
assays to confirm their performance in inhibit-
ing the five targets. Molecular docking studies 
were also conducted using the Autodock soft-
ware to predict the binding interaction of the 
compounds. Finally, physicochemical proper-
ties and BBB permeability were analyzed to 
test their suitability as drug candidates. The 
result concluded that several MTDLs demon-
strated their ability to effectively inhibit both 
AChE and cellular tau oligomerization. In-
terestingly, compound 11f has demonstrated 
greater neuroprotective efficacy, showing the 
effectiveness of multi-targeted drugs as thera-
peutic agents for AD and urging further inves-
tigation (Shoaib et al, 2021).

Lecanemab clinical trial
Targeted for soluble aggregated Aβ 

plaques, Lecanemab, a humanized IgG1 
monoclonal antibody, was approved by the 
FDA on July 6, 2023, and is currently under-
going clinical trials (“FDA Converts”, 2023). 
The phase 2 clinical trial for lecanemab, spe-
cifically study 201 blinded period(core), was 
a multinational, multicenter, double-blind, 
placebo-controlled study of 856 patients ran-
domized to one of five dose regimens or pla-
cebo. Subsequently, during the open-label ex-
tension (OLE) of the study, the patients were 
allowed to receive open-label lecanemab 10 
mg/kg biweekly for up to 24 months, with 
an off-treatment period (gap period) ranging 

from 9 to 59 months (mean 24 months). The 
study found a significant difference between 
the drug and placebo group over time and ob-
served key changes to the pathophysiology of 
the AD patients and a continued drug effect 
during the gap period. These results indicated 
lecanemab’s strong potential for reducing am-
yloid plaques and improving symptoms in AD 
patients. The study also proved the effective-
ness of plasma biomarkers as indicators for 
lecanemab treatment responses. The ongoing 
phase three clinical trials will further explore 
these results and the therapeutic potential for 
lecanemab (Mc Dade et al, 2022).

Research method
Binding Sites Identification
The availability of compatible binding sites 

for small molecules is crucial in developing 
drug candidates for enzymes. Multiple factors 
such as the size, composition, and energy in-
teraction could indicate if an enzyme has suit-
able binding sites for ligands (Agu et al, 2023). 
Geometric, machine learning, and energet-
ic-based methods were used to confirm the 
potential for AChE to provide binding sites for 
future drug developments. For the purpose of 
studying binding interactions with small mol-
ecules, we used Protein Data Bank(PDB) ID 
3LII for AChE for all binding site prediction 
experiments (Berman et al, 2000).

Geometric Method
DoGSiteScorer is an automatic algorithm 

from Protein Plus that identifies potential 
binding pockets in a protein only using the 3D 
structure of the protein. It also assigns each 
pocket with a druggability score ranging from 
0 to 1 using a support vector machine(SVM) 
algorithm trained and tested by a druggability 
dataset consisting of 1069 targets (Volkamer 
et al, 2010; Volkamer et al, 2012).

Machine Learning Method
Prankweb is an online tool that uses a 

combination of the 3D structure of a protein 
accessed through the PDB, evolutionary con-
servation analysis, and a previously devel-
oped machine learning algorithm P2Rank to 
predict potential ligand-binding sites in pro-
teins (Dávid et al, 2022; Lukáš et al, 2019; 
Radoslav et al, 2018).

Energetic Based Method
FTSite is an energy-based binding sites 

detection method with a 94% success rate in 
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the LIGSITE test set (Kozakov et al, 2015; 
Ngan et al, 2012; Brenke et al, 2009).

Virtual Screening
Pharmacophore Identification 

with PocketQuery
To identify lead compounds that can 

modulate the function of AChE, we first 
used pocketquery with PDB code 4QWW 
to search for pharmacophore models that 
have a higher likelihood of supporting ligand 
binding. 4 pharmacophore maps were select-
ed based on their high scores and their loca-
tion in chains C and E which are the antibody 
chains.

Large-scale Screening with ZINC-
Pharmer

The 4 selected pharmacophore maps are 
then exported to the online tool ZINCPharm-
er. A large library of around 18 million com-
pounds was virtually screened to identify ones 
that have desired fitting with the features of the 
imported pharmacophores. A few pharmaco-
phore features are deselected before the query 
to prevent having 0 hits. Afterward, 5 com-
pounds with the lowest Root-mean-square de-
viation(RMSD) from each of the 4 maps were 
selected and recorded. Compounds with lower 
RMSD values have better matching with the 
pharmacophore models and are thus select-
ed for further experimentation. The 20 com-
pounds are displayed in Tables 4, 6, 8, and 10. 

Molecular Docking with Swiss-
Dock

The binding affinity of the compounds 
to AChE was further examined using the 
Attracting Cavities (AC) 2.0 docking engine 
from the web service SwissDock (Bugnon 
et al, 2024; Röhrig et al, 2023). To start 
the docking session, follow these steps: 
(i) For the ligand preparations,  submit the 
SMILES for each ligand. These can be ac-
cessed through the ZINC database. (ii) For 
the protein target preparation, submit the 
PDB ID 4QWW for AChE with only chains 
A and B being selected. In addition, select 
“None” for the heteroatoms parameter. 
(iii) The dimensions of the search box are 
15Å by 15Å by 15Å with the center coordi-
nates at (18, -75, -4)Å (Fig. 2.). This search 
region is considered as it is in proximity 
to the binding sites with high druggability 
score found from the results in the bind-
ing site identification experiments (4.1). 
(iv) The number of Random Initial Condi-
tions (RIC) was kept at 1 and other param-
eters were kept as default. (v) Lastly, click 
on the “Starting Docking” button to initial-
ize the session. The results from this exper-
iment are displayed in Table 11 with the 
compound analyzed based on their Swis-
sParam score.

Figure 2. Position and Size of the Purple Search Box Used for the SwissDock Experiment

Drug Effectiveness with SwissADME
In order to determine the drug effec-

tiveness of our top compound from the 
SwissDock experiment, we assessed our 
compounds based on their absorption, distri-
bution, metabolism, and excretion (ADME) 
properties. We utilized SwissADME, a free 
web tool, to determine the physicochemi-
cal properties, lipophilicity, water solubility, 

druglikeness, and pharmacokinetics of our 
compounds. For lipophilicity specifically, we 
used the partition coefficient between n-octa-
nol and water (logP) from SwissADME’s in-
house physics-based iLogP method (Daina et 
al, 2017). Using these pieces of information, 
we were able to first determine if each com-
pound passed Lipinski’s rule of 5 for good ab-
sorption and permeation. Specifically, we ex-
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amined if the ligand had a molecular mass of 
less than 500 daltons, no more than 5 hydro-
gen bond donors, no more than 10 hydrogen 
bond acceptors, and no more than 5 for log P. 
Lastly, we also considered the compound’s 
ability to permeate the BBB and its GI ab-
sorption. To run SwissADME, we entered a 
list of SMILES files for our compounds and 
clicked “run” to start the calculations. Our re-
sults for the compounds with the top ADME 
result and compounds with the top Swis-
sParam scores are recorded in Table 13.

Toxicity test with ProTox 3.0
Determining the toxicity of a ligand is cru-

cial in developing lead drug compounds. Our 
study utilized ProTox 3.0, a virtual lab that 
runs the prediction of toxicities of small mol-

ecules (Banerjee et al, 2024). To run Tox-Pre-
diction, we entered the SMILES files for our 
compounds and clicked “smiles” to upload the 
compound information. We then selected “all” 
for our prediction models and clicked “start 
Tox-Prediction” to run the prediction.

Results and discussion
Binding Sites Identification
AChE is well-suited as a target for drug 

development as we observed the availabili-
ty of multiple binding sites for ligands and 
small molecules in all three of our used 
binding site detection methods. 

Geometric Method Results

Figure 2. Molecular Model of AChE Binding Sites 
 Predictions Using the DoGSiteScorer Method

Table 1. Potential AChE Binding Subpockets And Their Drug Scores 
 Predicted By DoGSiteScorer Ranked By Volume Using PDB ID: 3LII

Binding Pockets Volume (cubic Å) Surface (square Å) Drug Score
P_0 796.24 650.39 0.82
P_1 771.85 643.47 0.83

P_10 235.02 378.65 0.35
P_11 228.41 169.54 0.36
P_12 223.39 318.79 0.49
P_13 221.57 341.31 0.34
P_14 193.3 134.38 0.55
P_15 188.06 315.58 0.38
P_16 186.01 147.47 0.57
P_17 176.89 286.69 0.45

The table above displays the top 10 bind-
ing sites predicted by DoGSiteScorer, ranked 
based on their volume.  Binding sites P_0 
and P_1 are the largest, with volumes of 
796.24 and 771.85 cubic Å, surface areas of 
650.39 and 643.47 square Å, and the best 

drug scores of 0.82 and 0.83. Smaller binding 
sites like P_15 and P_17 showed significant-
ly worse drug scores, indicating that larger 
binding sites potentially have better drug 
scores and stronger binding affinity for small 
molecules. One notable binding site is P_1 
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from Protein Plus. It showed up in similar 
locations as Rank 2 from Prankweb and the 
green highlighted site from FTSites. Results 
from DoGSiteScorer display that this bind-
ing site consists of 37 residues with the most 
abundant residues being tryptophan (TRP), 
tyrosine(TYR), and glycine (GLY), each ap-

pearing 7, 6, and 4 times respectively. Anoth-
er promising binding site is  P_0 from Pro-
tein Plus and Rank 1 from Prankweb. This 
binding site consists of 44 residues with the 
most abundant residues being glycine (GLY), 
tyrosine (TYR), and serine (SER), each ap-
pearing 8, 7, and 4 times respectively.

Machine Learning Method Results

Figure 3. Molecular Model of Predicted 
Binding Sites in AChE (PDB ID: 3LII) by PrankWeb

Figure 4. Close Up of Rank 
1 AChE Binding Site

Figure 5. Close Up of Rank 
2 AChE Binding Sites

Table 2. Potential AChE Binding Pockets Predictions 
 by PrankWeb3 Ordered by Score Using PDB Code 3LII

Rank Score Probability # of residues Avg conservation

1 29.65 0.915 24 0.765

2 24.12 0.877 25 0.808

3 1.8 0.033 10 0.082

4 1.78 0.032 14 0

5 1.77 0.032 7 0.146

6 1.5 0.021 12 0.09

7 1.4 0.018 6 0

8 1.21 0.012 12 1.606

9 1.18 0.011 12 1.916

10 1.12 0.009 8 0
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The table above displays the top 10 bind-
ing sites predicted by PrankWeb3, ranked 
based on their score.  Binding sites Rank 1 
and Rank 2 are the largest, with 24 and 25 

residues and significantly higher drug scores 
of 29.65 and 24.12.

Energetic-Based Method Results

Figure 6. Molecular Model of Predicted Binding Sites by FTSite Server in AChE Using 
PDB code 3LII. Binding Sites are Highlighted with the Colors Pink, Green, and Purple

Figure 7. Molecular Model of Predicted Binding Sites In AChE By PyMol Session 
Using PDB Code 3LII. Binding Sites are the Blob Shapes Highlighted with the 

Colors Pink, Green, And Purple. FTsite Identified Three Binding Sites for AChE

ZINCPharmer Ligand Binding Result

Table 3. Pharmacophore Map 1 Information Containing Cluster 
 Model, Chain Letter, Residues, Score and Features Considered

Figure 8. Pharm Map 1 Model Chain Residue # Pocket Que-
ry Score

Features
Considered

C

TYR 90 0.986921
Hydrogen Do-
nor Hydrogen 
Donor Hydro-
gen Acceptor 
Hydrophobic

HIS 93
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Table 4. ZINCPharmer Results Based on Pharmacophore Map 1 for the 
Interaction of 5 Top Compounds with AChE (PDB ID: 4QWW)

Name ZINC64380746 ZINC67533629 ZINC19567459 ZINC89306446 ZINC95101290

Struc-
ture

RMSD 0.137 0.137 0.177 0.180 0.184

Mass 390 371 400 343 509

Table 3 provides information about phar-
macophore map 1. PocketQuery identifies 
that pharmacophore map 1 belongs in the C 
chain with two crucial residues Tyrosine at po-
sition 90 and Histidine at position 93. It has a 
high PocketQuery score of 0.986921. The key 
features we used for the ZINCPharmer query 

are 2 hydrogen donors, 1 hydrogen acceptor, 
and 1 hydrophobic interaction. Table 4 pres-
ents the top 5 ligands for pharmacophore map 
1. The RMSD values for these ligands range 
from 0.137 to 0.184, with the median value at 
0.177. This indicates that these ligands are a 
good fit for the Pharm Map 1.

Table 5. Pharmacophore Map 2 Information Containing Cluster 
Model, Chain Letter, Residues, Score and Features Considered

Figure 9. Pharm Map 2 Model Chain Resi-
due # Pocket Que-

ry Score
Features 

Considered

C

TYR 90

0.984095
Hydrogen Donor 
Hydrogen Accep-
tor Hydrophobic

HIS 93

MET 95

Table 6. ZINCPharmer Results Based on Pharmacophore Map 2 for the 
Interaction of 5 Top Compounds with AChE (PDB ID: 4QWW)

Name ZINC12232928 ZINC92176885 ZINC69328766 ZINC92189850 ZINC74888813

Struc-
ture

RMSD 0.005 0.007 0.007 0.008 0.010

Mass 388 371 396 358 362

Table 5 provides information about 
pharmacophore map 2. PocketQuery iden-
tifies that pharmacophore map 2 belongs in 
the C chain with three crucial residues Ty-

rosine at position 90, Histidine at position 
93, and Methionine at position 95. It has a 
high PocketQuery score of 0.984095. The 
key features we used for the ZINCPharmer 
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query are 1 hydrogen donor, 1 hydrogen ac-
ceptor, and 1 hydrophobic interaction. Ta-
ble 6 presents the top 5 ligands for pharma-
cophore map 2. The RMSD values for these 

ligands range from 0.005 to 0.010, with the 
median value at 0.007. This indicates that 
these ligands are an exceptional fit for the 
PharmMap 2.

Table 7. Pharmacophore Map 3 Information Containing Cluster 
Model, Chain Letter, Residues, Score and Features Considered

Figure 10. Pharm Map 3 Model Chain Residue # Pocket Query 
Score

Features
Considered

E

TYR 90 0.981743
Hydrogen 

Donor Hydro-
gen Acceptor 
Hydrogen Ac-
ceptor Hydro-

phobicHIS 93

Table 8. ZINCPharmer Results Based on Pharmacophore Map 3 for the 
Interaction of 5 Top Compounds with AChE (PDB ID: 4QWW)

Name ZINC64684329 ZINC31156228 ZINC67580654 ZINC12249875 ZINC63426782

Struc-
ture

RMSD 0.018 0.021 0.022 0.024 0.025
Mass 426 486 312 424 406

Table 7 provides information about phar-
macophore map 3. PocketQuery identifies 
that pharmacophore map 3 belongs in the E 
chain with 2 crucial residues Tyrosine at po-
sition 90 and Histidine at position 93. It has a 
high PocketQuery score of 0.981743. The key 
features we used for the ZINCPharmer query 

are 1 hydrogen donor, 2 hydrogen acceptors, 
and 1 hydrophobic interaction. Table 8 pres-
ents the top 5 ligands for pharmacophore 
map 3. The RMSD values for these ligands 
range from 0.018 to 0.025, with the median 
value at 0.022. This indicates that these li-
gands are a great fit for the PharmMap 3.

Table 9. Pharmacophore Map 4 Information Containing Cluster 
Model, Chain Letter, Residues, Score and Features Considered

Figure 11. PharmMap 4 Model Chain Residue # Pocket Query 
Score

Features
Considered

E

TYR 90

0.981391

Hydrogen 
Donor Hydro-
gen Acceptor 
Hydrophobic

HIS 93

MET 95
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Table 10. ZINCPharmer Results Based on Pharmacophore Map 4 for the 
 Interaction of 5 Top Compounds with AChE (PDB ID: 4QWW)

Name ZINC01211703 ZINC33417589 ZINC03302264 ZINC35638852 ZINC93796225

Struc-
ture

RMSD 0.016 0.018 0.020 0.021 0.021

Mass 
(dalton) 448 469 489 502 389

Table 9 provides information about phar-
macophore map 4. PocketQuery identifies 
that pharmacophore map 2 belongs in the 
C chain with three crucial residues Tyrosine 
at position 90, Histidine at position 93, and 
Methionine at position 95. It has a high Pock-
etQuery score of 0.981391. The key features 
we used for the ZINCPharmer query are 1 

hydrogen donor, 1 hydrogen acceptor, and 1 
hydrophobic interaction. Table 10 presents 
the top 5 ligands for pharmacophore map 
4. The RMSD values for these ligands range 
from 0.016 to 0.021, with the median value 
at 0.020. This indicates that these ligands are 
a great fit for the PharmMap 4. 

SwissDock Molecular Docking Results

Table 11. Swissdock Results Showing the Docking of the 20 Compounds 
with AChE. Two Models (Interactions and Protein Surface) are Presented 

for each Compound, Along with the Top SwissParam Score
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m

o
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L_1 1 64380746 13 –7.1876

L_2 1 67533629 0 –8.1535
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L_3 1 19567459 0 –8.2314

L_4 1 89306446 0 –7.9297

L_5 1 95101290 4 –8.1756

L_6 2 12232928 2 –7.0061

L_7 2 92176885 2 –7.1795
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L_8 2 69328766 6 –8.3006

L_9 2 92189850 1 –7.5941

L_10 2 74888813 2 –7.6825

L_11 3 64684329 1 –7.9125

L_12 3 31156228 0 –7.7121
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L_13 3 67580654 1 –7.4535

L_14 3 12249875 7 –7.3507

L_15 3 63426782 0 –7.5266

L_16 4 01211703 0 –8.6741

L_17 4 33417589 1 –7.5992
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L_18 4 03302264 1 –8.9425

L_19 4 35638852 8 –7.2905

L_20 4 93796225 2 –7.9142

The data table above shows 20 selected li-
gands categorized by 4 pharmacophore map 
groups. The SwissParam score indicates the 
binding affinity between the ligand and the 
specific binding site, with the larger nega-
tive value indicating a stronger interaction. 
The SwissParam score for this dataset rang-
es from -8.9425 to -7.0061, with the median 
score being at -7.6973. These promising re-
sults indicate that many ligands interact well 
with AChE and are suitable as potential lead 
compounds for further investigation. For 
each ligand, the top cluster number and the 
member with the best SwissParam score are 
recorded. The cluster number represents a 
specific binding site on the target protein and 

the cluster member represents one of many 
ways a ligand can bind to a cluster. Only the 
cluster number is displayed. The most com-
mon cluster numbers are 0, 1, and 2, with 6, 
5, and 4 occurrences respectively. For each 
ligand, the left side figure shows the interac-
tion between the ligand and its environment, 
including hydrogen bonds, ionic interactions, 
cation-π interactions, hydrophobic contacts, 
and π-stacking interactions. The right side 
figure shows the ligand docking with the 
protein surface displayed. Visual analysis of 
these figures suggests that most ligands used 
in this experiment bind favorably to one spe-
cific site on AChE.
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Table 12. SwissParam Scores of Top Ligands Compared with Popular AChE-Is

Ligand Cluster SwissParam Score (kcal/mol)

Donepezil 1 –7.3369

Rivastigmine 1 –7.3763

Galantamine 1 –6.8899

L_18 1 –8.9425

L_16 0 –8.6741

L_8 6 –8.3006

L_3 4 –8.2314

L_5 0 –8.1756

Comparing the SwissParam score of our 
compounds with popular AChE-I like do-
nepezil, rivastigmine, and galantamine, we 
found that our top compounds have stron-

ger binding interaction scores than these 
FDA-approved compounds.

Ligand Absorption, Distribution, Metab-
olism and Excretion(ADME) Results

Table 13. SwissADME Result of Top Ligands with Information on the Physicochemical 
Properties, Water Solubility, Lipophilicity, and Pharmacokinetics of each Compound

Name Lipins-
ki LogP

#
H

-b
o

n
d

 
ac

ce
p

to
r

#
H

-b
o

n
d

 
d

o
n

o
r Molecular

Weight
(g/mol)

BBB 
per-

meant

Water Sol-
ubility

GI 
Absorp-

tion

L_6 Yes 3.66 3 1 387.54 Yes Moderately 
Soluble High

L_7 Yes 3.31 3 2 370.51 Yes Moderately 
Soluble High

L_9 Yes 3.01 3 3 358.47 Yes Moderately 
Soluble High

L_16 Yes 3.38 4 2 447.53 No Moderately 
Soluble High

L_3 Yes 2.57 4 3 399.51 No Moderately 
Soluble High

L_8 Yes 2.76 4 3 395.54 No Soluble High

L_5 No 2.84 5 2 508.57 No Poorly
Soluble High

L_18 No 1.59 8 3 488.51 No Soluble Low

Table 13 shows that most compounds are 
able to pass Lipinski’s rule with the last two 
compounds each having 1 violation. Overall, 
L_6(ZINC12232928), L_7(ZINC92176885), 
and L_9(ZINC92189850) are our top 3 drug 
candidates as they showed promising ADME 

results while having BBB permeability and 
high GI absorption. The 5 compounds with 
the highest SwissParam score had poor 
ADME results with none of them being able 
to have BBB permeability and three of them 
being less soluble than other compounds.
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Ligand Toxicity Prediction Results

Figure 12. Toxicity Radar Chart for L_16

Compound L_16:
Predicted LD50: 2450 mg/kg
Predicted Toxicity Class: 5

Figure 13. Network Chart for L_16
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Figure 14. Toxicity Radar Chart for L_3

Compound L_3:
Predicted LD50: 2800 mg/kg
Predicted Toxicity Class: 5

Figure 15. Network Chart for L_3



The European Journal of Biomedical 
and Life Sciences 2024, No 3

VIRTUAL SCREENING OF ACETYLCHOLINESTERASE-CENTERED INHIBITORS64

Section 4. Pharmaceutical Sciences

Figure 16. Toxicity Radar Chart for L_8

Compound L_8:
Predicted LD50: 1000 mg/kg
Predicted Toxicity Class: 4

Figure 17. Network Chart for L_8
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Figure 18. Toxicity Radar Chart for L_5

Compound L_5:
Predicted LD50: 2800 mg/kg
Predicted Toxicity Class: 5

Figure 19. Network Chart for L_5
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Figure 20. Toxicity Radar Chart for L_18

Compound L_18:
Predicted LD50: 5240 mg/kg
Predicted Toxicity Class: 6

Figure 21. Network Chart for for L_18
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Figure 22. Toxicity Radar Chart for L_6

Compound L_6:
Predicted LD50: 75mg/kg
Predicted Toxicity Class: 3

Figure 23. Network Chart for L_6
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Figure 24. Toxicity Radar Chart for L_7

Compound L_7:
Predicted LD50: 1190 mg/kg
Predicted Toxicity Class: 4

Figure 25. Network Chart for L_7
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Figure 26. Toxicity Radar Chart for L_9

Compound L_9:
Predicted LD50: 800 mg/kg
Predicted Toxicity Class: 4

Figure 27. Network Chart for L_9
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Table 14. ProTox Toxicity Class Description

Class 1 fatal if swallowed (LD50 ≤ 5)
Class 2 fatal if swallowed (5 < LD50 ≤ 50)
Class 3 toxic if swallowed (50 < LD50 ≤ 300)
Class 4 harmful if swallowed (300 < LD50 ≤ 2000)
Class 5 may be harmful if swallowed (2000 < LD50 ≤ 5000)
Class 6 non-toxic (LD50 > 5000)

LD50: the median lethal dose meaning the dose at which 50% of test subjects die upon expo-
sure to a compound (SwissADME. Retrieved from URL: http://www.swissadme.ch/. Accessed 
July 16 2024)

Our results from Pro Tox 3.0 show that 
most compounds have a toxicity class of 4 or 
5 and are harmful or may be harmful if swal-
lowed. The network chart showed us that the 
clusters most heavily affected by the drugs are 
respiratory, neurological, clinical, and BBB.  
Overall, our compound has a median LD50 of 
1820 mg/kg with outliers L_18 being surpris-
ingly non-toxic(LD50 of 5240 mg/kg) and L_6 
being toxic if swallowed(LD50 of 75 mg/kg). 
The data for L_6 specifically suggest that al-
though these compounds have strong binding 
interaction and favorable ADME results, they 
could be harmful and might require modifi-
cations to improve toxicity levels. Regardless, 
most compounds tested in the Pro-Tox exper-
iment showed appropriate toxicity classes of 
between 4 and 5. 

Statement of limitation
This research has potential limitations. 

Due to the time constraint of the study, only 
the top compounds are reported as the re-
sults, leading to a limited sample size.  Only 
4 pharmacophore maps with the top scores 
were selected from Pocketquery to be used 
for the ZINCPharmer experiment. In Pock-
etquery, there are hundreds of other phar-
macophore maps for AChE with scores above 
0.9 that could potentially lead to new prom-
ising ligands. In addition, only 5 compounds 
with the highest RMSD scores for each of 
the 4 pharmacophore maps are recorded 
and analyzed from ZINCPharmer. This lim-
its our sample size for the following Swiss-
Dock, SwissADME, and ProTox experiments 
to only 20 compounds. Additionally, our re-
sults from the SwissDock experiment showed 
that most of our top compounds only dock to 
one specific binding site on AChE. This is in 

contrast to the results from our binding site 
detection experiment, which showed multi-
ple promising binding sites for small com-
pounds. This discrepancy is likely due to the 
time limit constraint for the search box on 
SwissDock, leading to only a portion of the 
whole AChE enzyme being examined. These 
limitations could lead to the exclusion of 
many compounds with potentially promising 
results. To overcome these limitations, one 
direction for future studies in the short term 
is to expand the sample size of the study and 
examine a larger series of compounds. In ad-
dition, the study could explore other regions 
of AChE and examine the molecular docking 
of compounds with other binding clusters.

In this study, the 20 compounds selected 
for further experimentation had the highest 
RMSD scores from the ZINCPharmer exper-
iment. The series of compounds explored 
in this study could be biased towards their 
structural affinity to their respective phar-
macophore maps.  This bias potentially ex-
cluded other important factors in drug devel-
opment such as binding energy interactions, 
ADME, and toxicity. This leads to tradeoffs 
in different characteristics of the compound. 
For example, L_16(ZINC01211703) has the 
highest SwissParam score of –8.9425 kcal/
mol and the best toxicity result, however, it 
has unacceptable ADME results. Additional-
ly, L_6(ZINC12232928) has a SwissParam 
score of – 7.0061 kcal/mol and has favorable 
ADME results, however it is highly toxic, with 
a predicted LD50 of 75 mg/kg. One potential 
way to avoid this limitation in future virtu-
al screening studies is to select the top com-
pounds based on a multifactorial analysis of 
their characteristics and test results instead 
of only focusing on their RMSD scores. Re-
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searchers can give a score for the compound 
for each factor considered for drug develop-
ment, and create a composite score with the 
scores for each factor weighted based on their 
respective importance. This method might 
lead to more consistent results as opposed to 
considering only one factor to narrow com-
pounds for further experimentation.

All experiments in this study are compu-
tational and done on free online web tools. 
These online models and algorithms might 
produce inaccurate results and fail to pre-
cisely simulate real-world interactions. Not 
all pharmacophore features were selected in 
the ZINCPharmer experiment which might 
lead to slightly inaccurate results. Although 
virtual screening offers a speedier and rela-
tively accurate way to narrow down a large 
library of compounds, physical screening is 
needed to validate these results.

Conclusion
Alzheimer’s disease (AD), a neurodegen-

erative disease characterized by memory loss 
and cognitive deficit, is currently accounting 
for 60–70% of the 50 million dementia cases 
worldwide. The costliness and adverse side 
effects of current AD treatments call for new 
improved therapy of AD that offers strong effi-
cacy while having tolerable toxicity and favor-
able ADME. Acetylcholinesterase inhibitors 
(AChE-I), compounds that are about to reduce 
the breakdown of acetylcholinesterase (AChE), 
have shown promising efficacy in recent years 
in reducing cognitive decline symptoms in AD 
patients. Our research identifies and examines 
potential lead compounds for developing better 
AChE-I using a variety of online virtual screen-
ing tools. We first utilized geometric, machine 
learning, and energetic-based methods to con-
firm the availability of binding sites for small 
compounds on AChE. Using Pocketquery and 
then ZINCPharmer, we were able to narrow 
down a large library of compounds based on 
their structural affinity to the features of the 
top 4 pharmacophore maps we selected from 
AChE. Using SwissDock, we further narrow 
down ligands L_18(ZINC03302264), L_16(Z-
INC01211703), L_ 8(ZINC69328766), L_3(Z-
INC19567459), and L_ 5(ZINC95101290) 
as the compounds with the strongest binding 
interaction with AChE. This series of ligands 

has a median SwissParam score of -8.3006 
kcal/mol, which is nearly 1 kcal/mol higher 
compared to currently FDA-approved AChE-I. 
However, in ADME screening,  ligands  L_6(Z-
INC12232928), L_7(ZINC92176885), and 
L_9(ZINC92189850) with slightly worse 
binding interaction score were the only com-
pounds able to cross the BBB and pass Lip-
inski’s rule. After testing these compounds for 
their toxicity using ProTox 3.0, ligands L_7 
and L_9 maintained excellent testing results 
as they are our most promising compounds 
with high SwissParam scores of – 7.1795 and 
-7.5941 kcal/mol, favorable ADME results, 
and acceptable toxicity levels. In future stud-
ies, enzymatic assays and biological screening 
for these compounds can further investigate 
and confirm the drug properties of these com-
pounds. The efficacy and toxicity of the com-
pounds can be further verified through in vivo 
and in vitro studies. Additionally, other labo-
ratory techniques such as microscale thermo-
phoresis (MST), surface plasmon resonance 
(SPR), isothermal titration calorimetry (ITC), 
and Kd calculations can be conducted to val-
idate the molecular binding interactions of 
these ligands.
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