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Abstract
Modern cancer treatments have developed to a great extent – however, various factors 

such as cancer types and resistance continue to make effective treatments difficult to cre-
ate for many cancers. Among different cancer treatments, immunotherapy shows promise 
because of its utilization of one’s own body’s immune system in fighting off cancerous cells. 
Immune checkpoints instruct the body to stop producing anti-cancer cells, and blocking 
these checkpoints can be effective in reactivating an immune system. B and T Lymphocyte 
Attenuator (BTLA) is an immune checkpoint that shows promise as an immunotherapy 
target, but current clinical trials focus solely on large monoclonal antibodies that can have 
severe side effects and other limitations due to larger molecular size. By identifying small 
molecule BTLA inhibitors, the development of anti-cancer immunotherapy treatments 
could be vastly improved. In this paper I utilize a variety of experiments to virtually screen 
small molecules and identify potential BTLA inhibitors. First, I located suitable binding 
sites in BTLA using 3 different methods (geometric, energetic, and machine learning meth-
ods). I identified compounds using virtual screening in two different experiments, by iden-
tifying HVEM B-chain pharmacophore maps, then scanning the ZINC compound library 
for matches. Then, I verified the compounds’ site binding on BTLA with molecular docking 
in SwissDock. Finally, the druggability of the remaining compounds were evaluated twice, 
for drug properties and for toxicity, in SwissADME and ProTox 3.0 respectively. In the end, 
two promising compounds with favorable energetic interactions with BTLA, strong drug 
properties according to Lipinski’s rule, and low toxicity were identified as drug candidates 
for different applications, which hold potential for being pivotal milestones in the field of 
cancer therapy.
Keywords: B and T Lymphocyte Attenuator (BTLA), immunotherapy, cancer, cancer 
therapy, immune checkpoints, drug discovery, small molecule inhibitor
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Introduction
Cancer, a disease caused by uncontrolled, 

abnormal cell growth, is becoming more 
prominent of a global issue than ever, and 
with it comes human ingenuity in discover-
ing cancer treatments. Modern treatments 
range from chemotherapy, which utilizes 
chemicals to kill dividing cancer cells, to ra-
diation therapy, which induces damage to the 
DNA of cancer cells using radiation (Hossain 
et al., 2023; Jaffray et al., 2015). In addition, 
scientists have found that combining multi-
ple treatments can be effective at an afford-
able cost (Bayat Mokhtari et al., 2017). How-
ever, the large variability in different cancer 
types, cancer resistance to drugs, and the 
side effects of toxic drugs continue to make 
universal treatments nigh impossible (Barot 
et al., 2023).

Among different types of cancer treat-
ments, immunotherapy utilizes one’s own 
body’s immune system to fight off cancer. 
Currently, a better understanding of the im-
mune system and immune surveillance has 
slowly made immunotherapy more viable – 
however, it is still a juvenile cancer treatment 

due to the difficulty of predicting its effective-
ness and toxicity (Esfahani et al., 2020). But 
compared to conventional treatment methods 
such as chemotherapy, which can see harmful 
damage to parts of the human body that aren’t 
cancerous, immunotherapy could potentially 
have fewer side effects (Shahid et al., 2019).

Immune checkpoints allow the immune 
system to keep itself in check – they can in-
hibit or stimulate molecules, allowing the 
immune system to either attenuate or ac-
tivate T-cell proliferation and activity. Im-
mune checkpoints are necessary in main-
taining homeostasis in the immune system, 
and to prevent any collateral damage done 
by one’s own immune system. Because of its 
regulatory nature, some cancers have been 
found to slip under an immune system and 
halt T-cell proliferation through immune 
checkpoint pathways. On the other hand, 
immune checkpoints can be blocked in order 
to activate T-cells, which can target cancers 
(Lee et al., 2016). The function of immune 
checkpoint pathways and our ability to in-
hibit them mark a promising avenue in im-
muno-oncology.

Figure 1. Various immune checkpoints found on T-cells, and their binding 
counterparts found on antigen-presenting or tumor cells (Qin et al., 2019)

Inhibitors for immune checkpoints PD‑1 
and CTLA‑4 are currently the forefront of im-
munotherapy, having received FDA approval 
(Zhang et al., 2021). However, the inhibitors 
for these pathways are limited – immune 
checkpoint monotherapies for PD‑1 and 

CTLA‑4 have been found to show responses 
in only 20%-30% of patients (Padmanee et 
al., 2021). In addition, various cancers cur-
rently exhibit complete resistance to the cur-
rent treatment methods (Pilard et al., 2021). 
Because of this, research of newer inhibitors 
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for immune checkpoints could mean great 
strides in the field of cancer treatment.

B and T Lymphocyte Attenuator (BTLA), 
is an immune checkpoint most commonly 
found on B and T lymphocytes and dendritic 
cells, and negatively regulates immune re-
sponses to maintain immune homeostasis 
when bound with Herpesvirus Entry Media-
tor (HVEM), which is found on similar cells 
(Sedy et al., 2005; Ning et al., 2021). Similarly 
to PD‑1 and CTLA‑4, BTLA’s negatively reg-
ulatory nature in the immune system means 
it is involved in many immune disorders and 
immune system functions (Watanabe et al., 
2003). For example, mice have been found to 
have a greater risk of autoimmune diseases 
when deficient of BTLA (Oya et al., 2008).

BTLA on T-cells inhibits activity when ac-
tivated by HVEM, which can prevent T-cells 
from being able to fight against cancer cells. 
Since cells deficient in BTLA are found to have 
increased T-cell activity and proliferation, in-
hibiting BTLA could potentially be pursued 
as an immunotherapy target (Andrzejczak et 
al., 2024). However, the current main mol-
ecule for inhibiting BTLA is the monoclonal 
antibody (mAb) icatolimab, which was ap-
proved for clinical trials in 2019. Its larger 
size may provide challenges for immunother-
apy in the future, such as longer lasting side 
effects and lower maneuverability, highlight-
ing a need for discovering new, viable BTLA 
inhibitors that are of smaller molecular sizes.

Method
Locating Suitable Binding Sites on 

BTLA
Before beginning to find small molecules 

that could bind to BTLA, possible binding 
locations must first be identified. This was 
done using 3 different methods, all utiliz-
ing BTLA’s Protein Database (PDB) Code: 
1XAU. This code represents the 3D structure 
of BTLA when it is not interacting with ex-
ternal molecules, which gives a strong base 
to identify binding sites for the use of small 
molecule binding.

Geometric Method
The aim of the geometric method was to find 

binding sites on BTLA that are the right size for 
small molecules to target. First, the PDB code 
1XAU was typed into the web structure-based 
modeling server, proteins.plus, to identify the 

correct BTLA model (Schöning-Stierand et 
al., 2022). Then, the geometric based binding 
sites were calculated using the default parame-
ters of DoGSiteScorer, which detected binding 
sites based solely on the 3D structure of BTLA 
(Volkamer et al., 2010).

Energetic-based Method
The second method was the energet-

ic-based method using FTSite at ftsite.
bu.edu, which identified binding sites using 
multiple molecular probes that account for 
charge and energy at the binding sites (Koza-
kov et al., 2015). BTLA’s PDB code was en-
tered into FTSite, where the job was queued, 
completed, and later viewable on the website.

Machine Learning Method
The last method used to identify suitable 

binding sites on BTLA was the machine learn-
ing method, using prankweb.cz (Jakubec et 
al., 2022). This method uses a variety of fac-
tors, from geometric to energetic, to identify 
binding sites. To use the model, the PDB code 
for BTLA was entered and submitted.

Virtual Screening with Pharmaco-
phore

In order to narrow down suitable com-
pounds to bind with BTLA and prevent its 
binding with HVEM, a virtual screening pro-
cess must be undergone. First pharmacoph-
ore maps were identified with PocketQuery, 
then the ZINC library was screened with 
ZINCPharmer. Pharmacophore maps uti-
lized the PDB code 2AW2, and were of the 
B-chain of HVEM, representing the interac-
tion between BTLA and HVEM.

Pharmacophore Mapping
To identify the best pharmacophore maps 

on the BTLA/HVEM interaction, I used pock-
etquery.csb.pitt.edu. The PDB code 2AW2 
was entered and searched, and the clusters 
with the highest scores on the B-chain were 
used. The B-chain is the HVEM side of the 
interaction, and using these maps will enable 
the discovery of small compounds that mim-
ic its interaction with BTLA. The maps were 
then exported to ZINCPharmer through the 
website’s in-built export function.

Small Molecule Virtual Screening
In zincpharmer.csb.pitt.edu, the phar-

macophore maps were isolated by hiding the 
ligand and receptor residues in the viewer 
tab. Then, the submit query button scanned 
and identified matching compounds from 
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the ZINC library, which were then organized 
from lowest to highest Root Mean Square 
Deviation (RMSD) score to pick the best 
compound matches based on the pharmaco-
phore map.

Molecular Docking
In order to quantify the energy between 

20 chosen compounds and different bind-

ing sites on BTLA, I  used molecular dock-
ing using the newest version of swissdock.
ch. For each ligand, the SMILES format is 
found with the ZINC library website, and the 
PDB code for BTLA, 1XAU, was used. To de-
fine the search space, the sizes shown in Ta-
ble 1 were used. Parameters were set to the 
default of 1.

Table 1. Search space used for molecular docking of BTLA in SwissDock experiment

Search box center (Å) 30 28 14
Search box size (Å) 28 25 41

Figure 2. Search space used for 
BTLA in the SwissDock experiment

Drug Properties Evaluation using 
SwissADME

With the top 5 compounds from the 
molecular docking experiment, I  utilized 
swissadme.ch to evaluate the drug prop-
erties of the molecules. The respective 
SMILES were entered into the website and 
the evaluations were run. I looked at the 4 
elements of Lipinski’s rule as well as water 
solubility, GI absorption, and BBB perme-
ability to evaluate the drug effectiveness of 
these compounds.

Toxicity Prediction using ProTox 3.0
The purpose of the toxicity prediction ex-

periment is to see if the toxicity of the two re-
maining compounds are within an acceptable 

toxicity range. This was done using Tox Pre-
diction from ProTox 3.0, where the SMILES 
format and all models were selected. I  then 
compared the predicted values (LD50, toxic-
ity class, etc) as well as the predicted active 
elements and models between the two com-
pounds to determine drugging suitability.

Results
Geometric Method
Results

Figure 3. Six suitable binding sites 
on BTLA, color labeled, based on 
geometric methods and identified 

using the DoGSiteScorer

Table 2. Volume, Surface Area, and Drug Score assigned to each binding 
site with the Geometric method, using DoG Site Scorer at proteins. plus

Name Volume (Å^3) Surface Area (Å^2) Drug Score
P_0 (Orange) 323.84 479.33 0.62
P_1 (Violet) 243.01 322.2 0.42
P_2 (Lime Green) 184.51 439.5 0.58
P_3 (Red) 121.98 306.51 0.36
P_4 (Blue) 113.98 326.8 0.21
P_5 (Green) 103.68 242.98 0.17
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Discussion
Using the geometric method, 6 bind-

ing sites were identified with Protein.plus 
(DoGSiteScorer), each with varying volumes 
(103.68 to 323.84 Å^3) and surface areas 
(242.98 to 479.33 Å^2). The top binding site 
(P_0) in BTLA (PDB: 1XAU) based on Pro-
tein.plus had a volume of 323.84 Å^3 and 
surface area of 479.33 Å^2. This binding site 
is highlighted in orange in Figure 3. Because 
Protein.plus is only based on the 3D shape of 
BTLA and not any other factors, such as the 
energetic ability of small molecules to bind 
at the site, there are more binding sites than 
testing with other methods.

Energetic-Based Method
Results

Figure 4. Three suitable binding sites, 
color labeled, identified based on the 

energetic-based method, using FTSite

Discussion
From the energetic-method tested using 

FTSite, 3 suitable binding sites were iden-

tified, labeled in pink, green, and purple. 
These represent binding sites on BTLA (PDB: 
1XAU) that are more energetically-favorable 
for small compounds to potentially bind to.

Machine Learning Method
Results

Figure 5. First suitable binding site of 
BTLA (labeled in red) based on the machine 
learning method, identified using PrankWeb

Figure 6. Second suitable binding 
site of BTLA (labeled in yellow) based 

on the machine learning method, 
identified using PrankWeb

Table 3. Suitable binding site rankings, drug scores, and residue information for 
the two binding site results from the machine learning method, using PrankWeb

Binding Site Ranking Drug Score # of Residues Residues

1 (red) 2.58 10

LYS50
ASN52
VAL 57
PRO 58
LEU59
GLU60
LEU65
HIS86
SER88
ASP 89
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Binding Site Ranking Drug Score # of Residues Residues

2 (yellow) 1.08 9

ILE17
LYS18
SER21
HIS23
LYS32
ILE33
GLU34
PRO 36
VAL 109

Discussion
The machine learning method shows two 

suitable binding sites, fewer than the other 
two methods used, because it combines a 
variety of factors instead of using just one. 
The binding sites must fit structural, physi-
co-chemical, and evolutionary factors – the 
stricter criteria means that fewer sites are 

selected (Kufareva I., Abagyan R. 2012). The 
top binding site identified with Prank Web 
(labeled as red in Figure 4) has a drug score 
of 2.58 and consists of 10 amino acid resi-
dues.

Pharmacophore Mapping
Results

Table 4. PocketQuery pharmacophore mapping results for top five 
scoring clusters on the B chain of HVEM (Koes et al, 2012)

Ranking Score Distance (Å) Size (residues) Residues

1 0.771762 9.1795 3
GLU31
LEU32
GLY34

2 0.754979 7.298 2 LEU32
GLY34

3 0.731909 0 1 LEU32

4 0.730782 9.1795 4

GLU31
LEU32
THR33
GLY34

5 0.726755 11.9219 4

PRO 17
GLU31
LEU32
GLY34

Figure 7. Top PocketQuery 
match for HVEM B-chain

Figure 8. Second top PocketQuery 
match for HVEM B-chain
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Figure 9. Third top PocketQuery 
match for HVEM B-chain

Discussion
PocketQuery search results for the BTLA/

HVEM complex (PDB code: 2AW2) on the 
B chain showed the highest scoring results 
(with higher score being suitability for the 
design of small molecule inhibitors) gener-
ally having the residues GLU31, LEU32, and 
GLY34. The top five best scoring clusters for 
the B chain had varying distances (7.298 to 
11.9219 Å) and sizes (1 to 4 residues), with 

the best scoring cluster having a distance of 
9.1795 Å and size of 3.

Small Molecule Virtual Screening
Results

Figure 10. Pharmacophore map 
for top PocketQuery match

Figure 11. Pharmacophore map 
for top PocketQuery match after 
isolating 3 closest interactions

Table 5. Top compound match results from ZINCPharmer for highest 
scoring pharmacophore map of HVEM B-chain (Koes et al., 2012)

Name RMSD Score Mass (daltons) Residue Binds

ZINC37452229 0.013 288 6

ZINC38148338 0.016 560 8

ZINC34781361 0.017 494 15

ZINC38867909 0.018 224 5

Table 6. Highest scoring pharmacophore map overlaid with 
compounds that showed lowest RMSD scores in ZINCPharmer

ZINC37452229 ZINC38148338 ZINC34781361 ZINC38867909

Figure 12. Pharmacophore map for second top PocketQuery match
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Table 7. Top compound match results from ZINCPharmer for second 
highest scoring pharmacophore map of HVEM B-chain

Name RMSD Score Mass (daltons) Residue Binds
ZINC49601555 0.008 445 15
ZINC93485320 0.009 289 6
ZINC83429713 0.011 463 13
ZINC83429714 0.011 463 13
ZINC06624253 0.011 414 10
ZINC12664461 0.011 414 10
ZINC39223733 0.012 360 14
ZINC81245051 0.012 316 9

Table 8. Second highest scoring pharmacophore map overlaid with 
compounds that showed lowest RMSD scores in ZINCPharmer

ZINC49601555 ZINC93485320 ZINC83429713 ZINC83429714

ZINC06624253 ZINC12664461 ZINC39223733 ZINC81245051

Figure 13. Pharmacophore map for third top PocketQuery match

Table 9. Top compound match results from ZINCPharmer for third 
highest scoring pharmacophore map of HVEM B-chain

Name RMSD Score Mass (daltons) Residue Binds
ZINC39387927 0.008 326 3
ZINC05002395 0.009 286 7
ZINC86053368 0.009 364 11
ZINC06042710 0.010 366 11
ZINC85406601 0.011 373 8
ZINC63855962 0.012 258 2
ZINC39387868 0.012 316 4
ZINC39593299 0.012 390 3
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Table 10. Third highest scoring pharmacophore map overlaid with 
compounds that showed lowest RMSD scores in ZINCPharmer

ZINC39387927 ZINC05002395 ZINC86053368 ZINC06042710

ZINC85406601 ZINC63855962 ZINC39387868 ZINC39593299

Discussion
The RMSD values signal level of deviation 

the molecule has from the pharmacophore 
map (Kufareva et al., 2012). Out of the 20 
selected compounds with low RMSD values, 
from 3 different pharmacophore maps of the 
B chain on the BTLA-HVEM complex, there 
were varying masses (224 to 560) and resi-
due binds (2 to 15). The compounds with the 

lowest RMSD values were ZINC49601555 
and ZINC39387927 with RMSD values of 
0.008. Masses for the compounds were 445 
and 326 daltons respectively, and the com-
pounds had residue binds of 15 and 3.

Molecular Docking
Results

Table 11. Molecular docking results for the 20 compounds with lowest 
RMSD scores, using the updated version of Swiss Dock.ch.

Compound
Highest Swis-
sParam Score 

(kcal/mol)

Highest 
SwissParam 

Cluster
Highest Interaction

ZINC37452229 –6.6440 1

ZINC38148338 –6.5126 13
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Compound
Highest Swis-
sParam Score 

(kcal/mol)

Highest 
SwissParam 

Cluster
Highest Interaction

ZINC34781361 –6.5749 27

ZINC38867909 –7.0349 3

ZINC49601555 –6.8794 0

ZINC93485320 –6.7812 1

ZINC83429713 –7.1073 3

ZINC83429714 –7.4917 2
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Compound
Highest Swis-
sParam Score 

(kcal/mol)

Highest 
SwissParam 

Cluster
Highest Interaction

ZINC06624253 –7.0473 0

ZINC12664461 –7.1827 0

ZINC39223733 –7.2914 9

ZINC81245051 –7.1301 4

ZINC39387927 –7.3083 0

ZINC05002395 –6.7593 4

ZINC86053368 –6.5743 9
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Compound
Highest Swis-
sParam Score 

(kcal/mol)

Highest 
SwissParam 

Cluster
Highest Interaction

ZINC06042710 –6.7704 0

ZINC85406601 –7.1930 0

ZINC63855962 –7.2660 0

ZINC39387868 –7.4206 1

ZINC39593299 –7.2100 0

Discussion
Out of the 20 selected compounds, 12 com-

pounds were able to achieved a SwissParam score 
of below –7 kcal/mol. The highest SwissParam 
scores for each compound ranged from –6.5126 
to –7.4917 kcal/mol, with the top 5 compounds 
according to score being ZINC83429714, 
ZINC39387868, ZINC39387927, 
ZINC39223733, and ZINC63855962, from 
highest to lowest score. The SwissParam score 

represents free energy, so these 5 compounds 
with the largest numerical scores have the most 
optimal energy interactions. The locations of 
these interactions were on clusters 2, 1, 0, 9, 
and 0 respectively.

Drug Properties Evaluation
Results
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Table 12. Drug properties of top 5 compounds, identified with SwissADME
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ZINC83429714 3 8 2.11 463.46 0 –2.10 (Soluble) Low No

ZINC39387868 1 5 3.19 316.37 0 –3.69 (Soluble) High Yes

ZINC39387927 1 5 2.99 326.39 0 –3.88 (Soluble) High Yes

ZINC39223733 1 6 4.06 360.40 0 –2.89 (Soluble) High No

ZINC63855962 1 4 2.51 258.32 0 –2.76 (Soluble) High No

Discussion
After evaluating all 5 compounds, 

the two molecules that successfully pass 
the set benchmarks for druggability were 
ZINC39223733 and ZINC63855962. Both of 
these molecules fit the elements of Lipinski’s 
rule (<5 H bond donors, <10 H bond accep-
tors, 1–5 CLogP, <500 daltons) as well as be-
ing soluble, having High GI absorption and 

not being BBB permeable. ZINC39387868 
and ZINC39387927 also passed Lipinski’s 
rule, and were soluble with high GI absorp-
tion. However, they are BBB permeable, po-
tentially posing risks of side effects.

Toxicity Prediction
Results

Table 13. Predicted Toxicity Data using Tox-Prediction from Pro Tox 3.0.

Compound LD50 
(mg/kg)

Toxicity 
Class Toxic Elements

ZINC39223733 187 3
Nephrotoxicity

Respiratory Toxicity
Nutritional Toxicity

ZINC63855962 800 4

Neurotoxicity
Respiratory Toxicity

Carcinogenicity
BBB-barrier
Eco Toxicity

Clinical Toxicity
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Figure 14. Toxicity Radar Chart for Compound ZINC39223733, 
showing active toxic areas in nutritional, respiratory, and nephrotoxicity, 

lower than the average of its class of FDA-approved drugs

Figure 15. Network Charts for Compound ZINC39223733, showing 
the active and inactive clusters from the ProTox 3.0 experiment
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Figure 16. Toxicity Radar Chart for Compound ZINC63855962, 
showing active toxic areas in Clinical toxicity, eco toxicity, BBB-barrier 

toxicity, carcinogenicity, respiratory toxicity, and neurotoxicity, 
with BBB-barrier and respiratory toxicity being slightly higher 

compared to the average of its class of FDA-approved drugs

Figure 17. Network Chart for Compound ZINC63855962, showing 
the active and inactive clusters from the ProTox experiment
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Discussion
Screening both compounds with the 

toxicity prediction method found that 
ZINC39223733 was the better drug candi-
date, with a lower LD50 of 187 mg/kg and 
toxicity class of 3, but fewer active toxic ele-
ments. As seen in Figure 14, the 3 active tox-
ic elements of ZINC39223733 were all within 
an acceptable range.

ZINC63855962 had a higher LD50 of 
800 mg/kg and toxicity class of 4 – howev-
er, it had a total of 6 toxic elements, with 2 
elements, the blood-brain barrier and respi-
ratory toxicity elements, being slightly above 
the average FDA-approved drug of its class.

Comparing the two drug candidates, 
ZINC39223733 stands out as a better can-
didate overall because of its fewer toxic ele-
ments. On the other hand, ZINC63855962’s 
ability to penetrate the blood-brain barrier 
means it could be used to target tumors in the 
brain, which is only made possible because of 
the compound’s BBB permeability.

Statement of Limitations
The main limitation of these experiments 

is that they are virtual, and may not reflect 
accurate real-life test results for binding and 
toxicity. Going forward, in vitro or in vivo ex-
periments should be performed to evaluate 
the effectiveness of the compounds as BTLA 
inhibitors. Another limitation is that the 
PrankWeb evaluation of the first experiment 
only resulted in two binding sites on BTLA. 
PrankWeb was the most accurate binding site 
evaluator of the three methods used because 
it included the most factors, which brings up 
limitations for the ability of compounds to 
bind to BTLA. Finally, another limitation was 
in the Molecular Docking experiment, where 
many of the selected top 20 compounds had 
SwissParam scores above –7 kcal/mol, which 
were not ideal for moving into the drug prop-
erty evaluation. This meant less compounds 
in the final drug and toxicity evaluation stag-
es, which could have cut down on the number 
of promising compounds identified.

Conclusion
The first experiment identified two main 

binding sites on BTLA that accounted for all 
three binding site testing methods. In the 
next experiment, PocketQuery identified 
pharmacophore maps for molecules from 
the Zinc compound library to bind to, of 
which three maps were selected. From these 
three maps, I  used ZincPharmer to select 
20 of the best compounds with the lowest 
RMSD scores on these maps. In the third ex-
periment, I used molecular docking in Swiss-
Dock to compare the binding efficacy of the 
20 compounds, and the top five compounds 
for numerical SwissParam score were select-
ed. These five compounds were evaluated 
for drug properties in the SwissADME ex-
periment, where two passed Lipinski’s rule 
as well as additional drug property factors. 
In the last experiment, ProTox 3.0 iden-
tified both of these final two compounds, 
ZINC39223733 and ZINC63855962 as suit-
able drug targets due to acceptable LD50s 
and low number of active clusters. Between 
the two, ZINC39223733 is a better candi-
date overall, with less toxic elements – this 
choice is also backed by its lower SwissParam 
score of –7.4206 kcal/mol, compared to 
ZINC63855962‘s score of –7.2660 kcal/mol. 
On the other hand, ZINC63855962’s blood-
brain barrier permeability shows potential 
for use in treatment of brain tumors. Ul-
timately, this research has concluded two 
promising compounds for small molecule 
BTLA inhibitors as potential cancer thera-
pies.

Going forward, the next steps would in-
volve biophysical interactions with BTLA, to 
overcome the uncertainty of virtual model in-
teractions. In the long term, these inhibitors 
can be tested in animal studies and eventual-
ly clinical trials. By doing so, the effectiveness 
of these two top compounds, ZINC39223733 
and ZINC63855962, as BTLA inhibitors can 
be evaluated, bringing the field to cancer im-
munotherapy a new ray of hope
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