In the original languageTranslation into English

Pulsed Differential Calorimetry of the Heat Capacity Jump at Denaturation of Collagen Type I of Rat Tail Tendons

Authors

Nadareishvili Malkhaz, Kiziria Evgeni, Sokhadze Victor, Tvauri Genadi, Gogichaishvili Shota, Ramsden Jeremy

Annotation

The estimation of the heat capacity jump at melting of collagen fibers having principle significance for determination of the role of hydrophobic interactions in the process of formation and stabilization of collagen fibers was performed for collagen type I of rat tail tendons in an aqueous medium and in 0.5M acetic acid. The research was performed by using the unique high-precision pulsed differential scanning calorimeter (PDSC) designed by the authors. The device provides a measurement of heat capacity in the pulsed mode under the thermodynamically equilibrium conditions, in contrast to usual differential scanning calorimeters (DSC) performing the measurements in the continuous heating mode. The measurements carried out in the pulsed mode allow the exact determination of heat capacity before and after denaturation transition. The experiments showed that magnitude of the heat capacity jump in the aqueous medium is twice as large as the value of the jump in 0.5M acetic acid. The melting temperature in the aqueous medium was by 220C higher than in acetic acid and, the melting enthalpy in the aqueous medium was more too. The obtained results are discussed in the light of the data available in the literature regarding this problem.

 

Keywords

Collagen fibers melting
Pulsed differential scanning calorimetry (PDSC)
Heat capacity jump at denaturation of collagen
Hydrophobic interactions.

Authors

Nadareishvili Malkhaz, Kiziria Evgeni, Sokhadze Victor, Tvauri Genadi, Gogichaishvili Shota, Ramsden Jeremy

References:

  1. Rigby B.J., J. Thermal Biology, 2, p.89-93, 1977.
  2. Privalov P.L., Adv. Prot.Chem, 35, p.1-104. 1982.
  3. Tao Qu, Vikas Tomar, International Journal of Experimental and Computentional Biomechanics, vol.3, iss.1, p. 62-81, 2015.
  4. Tao Qu, Vikas Tomar, Materials Science and Engineering: C, vol.38, 28-38, 2014.
  5.  Perumal, S.; Antipova, O. & Orgel, J. P., PNAS 105 (8): p. 2824–2829, 2008. 
  6. Orgel, J. P.; Irving, T.C., PNAS 103 (24): p. 9001–9005, 2006.
  7. M.G. Cacace, E.M.Landau and J.J.Ramsden, Quarterly Reviews of Biophysics, Cambridge University Press, 30, 3, p.p.241-277, 1997.
  8. Nadareishvili Malkhaz, European Science Review, N9-10, pp 3-6, 2021
  9. Nordvig A., Hayduk U., J. Mol. Biol. V. 44, N1, p.161-172, 1969.
  10.  Aleksandrov V. Ia. Yspexi Sovremennoi Biologii (Rus.) v.67, iss.2 p.383-399, 1969.
  11. Мiles, C.A., Burjanadze, T.V.,  Biophysical Journal, 80, p.1480-1486, 2001.
  12. Мiles, C.A. Ghelashvili, M.  Biophysical Journal, 76, p.3243-3252, 1999.
  13. GG Basilia, GA Kharadze, KA Kvavadze, MM Nadareishvili, DF Brewer, Pulsed differential calorimetry of Zn-doped LSCO cuprates, Low Temperature Physics 24 (8), p.547-550, 1998
  14. M.M.Nadareishvili, K.A. Kvavadze, G.G. Basilia, Sh.A. Dvali, Z.Khorguashvili.    Journal of Low Temperature Physics., vol. 130, Nos 5/6, p529-542, 2003.
  15. M Nadareishvili, E Kiziria, V Sokhadze, G Tvauri. The problem of high heating rate in differential calorimetry, European Conference on Innovations in Technical and Natural Sciences, p.149-152, 2017
  16. M Nadareishvili, E Kiziria, V Sokhadze, G Tvauri, S Tsakadze. . New method of differential calorimetry. European science review, p. 253-255, 2017
  17. T. Khoperia, T Zedginidze, K Kvavadze, M Nadareishvili. Development of competitive nanotechnologies for solution of challenges in photocatalysis, electronics and composites fabrication.  212th Meeting of the Electrochemical Society. Abstract 107, 2007
  18. Privalov, G.P., Kavina, V., Freire, E..Privalov P.L. Anal. Biochem., v. 232, p.79-85, 1995.
  19. J. W. Loram, J.Phys.E: Sc. Instrum., vol.16, p. 367-375, 1983.
  20. G.W.H.Hohne, W.F.Hemminger, H.-J. Flammersheim – Differential Scanning Calorimetry, springer-verlag Berlin, 2003, 195p.
  21. Modulated temperature differential scanning calorimetry: theoretical and practical applications in polimer characterization, Edited by Mike Reading, Douglas J. Hourston, Dordrecht, The Netherlands.2006,328p.
  22. Christopher A. Miles, Thengiz V. Burjanadze and Allen J. Bailey, J. Mol. Biol., 245, p. 437-446, 1995.
  23. Boedtker H., Doty P., J. Amer. Chem. Soc., V.78, N17, p.4267-4280, 1956.
  24. HaLL C.E., Doty P.A., Amer. Chem. Soc., V.80, N4, p.1269-1274, 1958.
  25. Rice R.V., Casassa E.F., Kerwin R.E., Maser M.D., Arch. Bioch. Bioph, v.105, N3, p.409-423, 1964.
  26. Burjanadze T.V.  Biopolymers 21, p. 1489-1501, 1982.
  27. Burjanadze T.V. Biopolymers  32, p. 941-945, 1992.
  28.  Burjanadze T.V. Evidence for the role of 4-hidroxiproline in adaptation changes of thermostability of a collagen molecule and collagen Fibrils, Biopolymers, v.21, p.1489-1501,1982.
  29. Riich A. Crick F.H.C.,J.Mol.Biol., 3, p. 483-506, 1961.
  30. Ramachandran G.N., Chandrasecharan, R. Biopolymers 6, 11, p. 1649-1661, 1968.
  31. Ramachandran G.N. Bansal M. and Bhatnagar R.S. Bioch. Biophys. Acta., 322, p. 166-171, 1973.
  32. Tiktopulo, E.I.  Kajava, A,V., Biochemistry  37, p.8147-8152. 1998.
  33. . Schnell J. Arch.Bioch. Biophys., 127, p. 496-502, 1968.
  34. M.nadareishvili, T.Burjanadze, K.Kvavadze, E.Kiziria, E.Gelagutashvili, Arxiv: 1206.3908.
  35. Privalov P.L. Edv. Protein Chem., 33, p. 167-241, 1979.    
  36. Burjanadze T.V., Tiktopulo E.I., Privalov P.L. Dokladi Academii Nauk (Russian), v.293, p. 720-724, 1987.
  37. Burjanadze,T.V., Veis,A., Connective tissue research, 36, 347-365, 1997.

Other articles of the issue

cc-license