A computational study on the efficacy of small molecules as dual inhibitors for β-secretase 1 and acetylcholinesterase as Alzheimer’s disease therapeutics
Authors
Patrick Ming, Moustafa T. Gabr

Share
Annotation
Alzheimer’s disease is characterized by the progressive decline of many cognitive functions that involve numerous parts of the brain. Due to the complex nature and multi-faceted pathogenesis of neurodegenerative diseases, AD’s pathology has been correlated with a loss of cholinergic function as well as the overproduction of Aβ42. Because of this, multitargeted ligands have great potential as therapeutics. In this paper, we assessed the “bindability” of the proteins using various computational methods and online software. Then, we virtually screened through millions of potential small molecules using pharmacophore maps to find potential small molecule candidates. We then used software developed by the Swiss Institute of Bioinformatics (SIB) to both assess the binding energy of the small molecules to the compound (of which all compounds had a ∆G < –7.00 kcal/mol) as well as assess the druggability of the small compounds through their ADME profiles. By the end, we were left with 4 organic compounds that showed the most promise as dual inhibitors. Ranked from most to least promising, they are: ZINC68569271, ZINC41367268, ZINC67202317, ZINC05611209. They all show strong binding affinities for both AChE and BACE1, with the majority of each compound having a Gibbs free energy value of ∆G < –7.00 kcal/mol.
Keywords
Authors
Patrick Ming, Moustafa T. Gabr

Share
References:
Alzheimer’s association. (2019). Causes and Risk Factors. Alzheimer’s Disease and Dementia; Alzheimer’s Association. https://www.alz.org/alzheimers-dementia/what-is-alzheimers/causes-and-risk-factors
Atri, A. (2019). The Alzheimer’s Disease Clinical Spectrum. Medical Clinics of North America, 103(2), 263–293. https://doi.org/10.1016/j.mcna.2018.10.009
Benet, L. Z., Hosey, C. M., Ursu, O., & Oprea, T. I. (2016). BDDCS, the Rule of 5 and drugability. Advanced Drug Delivery Reviews, 101, 89–98. https://doi.org/10.1016/j.addr.2016.05.007
Bos, J. D., & Meinardi, M. M. H. M. (2000). The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Experimental Dermatology, 9(3), 165–169. https://doi.org/10.1034/j.1600-0625.2000.009003165.x
Breijyeh, Z., & Karaman, R. (2020). Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules, 25(24), 5789. https://doi.org/10.3390/molecules25245789
Cavalcante, S. F. de A., Simas, A. B. C., Barcellos, M. C., de Oliveira, V. G. M., Sousa, R. B., Cabral, P. A. de M., Kuca, K., & Franca, T. C. C. (2020). Acetylcholinesterase: The “Hub” for Neurodegenerative Diseases and Chemical Weapons Convention. Biomolecules, 10(3), 1BL. https://doi.org/10.3390/biom10030414
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a Free web Tool to Evaluate pharmacokinetics, drug-likeness and Medicinal Chemistry Friendliness of Small Molecules. Scientific Reports, 7(1). https://doi.org/10.1038/srep42717
Fährrolfes, R., Bietz, S., Flachsenberg, F., Meyder, A., Nittinger, E., Otto, T., Volkamer, A., & Rarey, M. (2017). ProteinsPlus: a web portal for structure analysis of macromolecules. Nucleic Acids Research, 45(W1), W337–W343. https://doi.org/10.1093/nar/gkx333
Gatz, M., Reynolds, C. A., Fratiglioni, L., Johansson, B., Mortimer, J. A., Berg, S., Fiske, A., & Pedersen, N. L. (2006). Role of Genes and Environments for Explaining Alzheimer Disease. Archives of General Psychiatry, 63(2), 168. https://doi.org/10.1001/archpsyc.63.2.168
Grogan, S., & Preuss, C. (2023, July 30). Pharmacokinetics. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK557744/
Grosdidier, A., Zoete, V., & Michielin, O. (2011a). Fast docking using the CHARMM force field with EADock DSS. Journal of Computational Chemistry, 32(10), 2149–2159. https://doi.org/10.1002/jcc.21797
Grosdidier, A., Zoete, V., & Michielin, O. (2011b). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Research, 39(suppl), W270–W277. https://doi.org/10.1093/nar/gkr366
Hampel, H., Vassar, R., Strooper, B. D., Hardy, J., Willem, M., Singh, N., Zhou, J., Yan, R., Vanmechelen, E., Vos, A. D., Nisticò, R., Corbo, M., Imbimbo, B. P., Streffer, J., Voytyuk, I., Timmers, M., Monfared, A. A. T., Irizarry, M., Albala, B., & Koyama, A. (2020). The β-Secretase BACE1 in Alzheimer’s Disease. Biological Psychiatry, 0(0). https://doi.org/10.1016/j.biopsych.2020.02.001
Hardy, J. (2006). Amyloid double trouble. Nature Genetics, 38(1), 11–12. https://doi.org/10.1038/ng0106-11
Jakubec, D., Skoda, P., Krivak, R., Novotny, M., & Hoksza, D. (2022). PrankWeb 3: accelerated ligand-binding site predictions for experimental and modelled protein structures. Nucleic Acids Research, 50(W1), W593–W597. https://doi.org/10.1093/nar/gkac389
Jendele, L., Krivak, R., Skoda, P., Novotny, M., & Hoksza, D. (2019). PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Research, 47(W1), W345–W349. https://doi.org/10.1093/nar/gkz424
Kana, O., & Brylinski, M. (2019). Elucidating the druggability of the human proteome with eFindSite. Journal of Computer-Aided Molecular Design, 33(5), 509–519. https://doi.org/10.1007/s10822-019-00197-w
Koes, D. R. (2023). PocketQuery. Pocketquery.csb.pitt.edu. http://pocketquery.csb.pitt.edu/pocket.html
Koes, D. R., & Camacho, C. J. (2011). Small-molecule inhibitor starting points learned from protein–protein interaction inhibitor structure. Bioinformatics, 28(6), 784–791. https://doi.org/10.1093/bioinformatics/btr717
Kondziella, D. (2016). The Top 5 Neurotransmitters from a Clinical Neurologist’s Perspective. Neurochemical Research, 42(6), 1767–1771. https://doi.org/10.1007/s11064-016-2101-z
Krivák, R., & Hoksza, D. (2018). P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. Journal of Cheminformatics, 10(1). https://doi.org/10.1186/s13321-018-0285-8
Kufareva, I., & Abagyan, R. (2012). Methods of protein structure comparison. Methods in Molecular Biology (Clifton, N.J.), 857, 231–257. https://doi.org/10.1007/978-1-61779-588-6_10
Lovinger, D. M. (2008). Communication networks in the brain: neurons, receptors, neurotransmitters, and alcohol. Alcohol Research & Health: The Journal of the National Institute on Alcohol Abuse and Alcoholism, 31(3), 196–214. https://pubmed.ncbi.nlm.nih.gov/23584863/
Ma, W.-H., Chen, A.-F., Xie, X.-Y., & Huang, Y.-S. (2021). Sigma ligands as potent inhibitors of Aβ and AβOs in neurons and promising therapeutic agents of Alzheimer’s disease. Neuropharmacology, 190, 108342. https://doi.org/10.1016/j.neuropharm.2020.108342
Maddison, J. E., Page, S. W., & Dyke, T. M. (2008). Clinical pharmacokinetics. Small Animal Clinical Pharmacology, 27–40. https://doi.org/10.1016/b978-070202858-8.50004-x
Marucci, G., Buccioni, M., Ben, D. D., Lambertucci, C., Volpini, R., & Amenta, F. (2020). Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology, 190, 108352. https://doi.org/10.1016/j.neuropharm.2020.108352
Medeiros, R., Baglietto-Vargas, D., & LaFerla, F. M. (2010). The Role of Tau in Alzheimer’s Disease and Related Disorders. CNS Neuroscience & Therapeutics, 17(5), 514–524. https://doi.org/10.1111/j.1755-5949.2010.00177.x
Medications for Memory, Cognition and Dementia-Related Behaviors. (2021). Alzheimer’s Disease and Dementia. https://www.alz.org/alzheimers-dementia/treatments/medications-for-memory#:~:text=Donepezil%20(Aricept%C2%AE)%3A%20approved
Mehta, M., Adem, A., & Sabbagh, M. (2012). New Acetylcholinesterase Inhibitors for Alzheimer’s Disease. International Journal of Alzheimer’s Disease, 2012, 1–8. https://doi.org/10.1155/2012/728983
Miyauchi, Y., Takechi, S., & Ishii, Y. (2021). Functional Interaction between Cytochrome P450 and UDP-Glucuronosyltransferase on the Endoplasmic Reticulum Membrane: One of Post-translational Factors Which Possibly Contributes to Their Inter-Individual Differences. Biological and Pharmaceutical Bulletin, 44(11), 1635–1644. https://doi.org/10.1248/bpb.b21-00286
Morris, G. M., & Lim-Wilby, M. (2008). Molecular docking. Methods in Molecular Biology (Clifton, N.J.), 443, 365–382. https://doi.org/10.1007/978-1-59745-177-2_19
NHS. (2022, August 31). Common questions about memantine. Nhs.uk. https://www.nhs.uk/medicines/memantine/common-questions-about-memantine/#:~:text=Memantine%20works%20by%20blocking%20the
P2Rank framework. (2023, March 14). GitHub. https://github.com/cusbg/p2rank-framework
Schöning-Stierand, K., Diedrich, K., Ehrt, C., Flachsenberg, F., Graef, J., Sieg, J., Penner, P., Poppinga, M., Ungethüm, A., & Rarey, M. (2022). ProteinsPlus: a comprehensive collection of web-based molecular modeling tools. Nucleic Acids Research, 50(W1), W611–W615. https://doi.org/10.1093/nar/gkac305
Stern, N., Gacs, A., Tátrai, E., Flachner, B., Hajdú, I., Dobi, K., Bágyi, I., Dormán, G., Lőrincz, Z., Cseh, S., Kígyós, A., Tóvári, J., & Goldblum, A. (2022). Dual Inhibitors of AChE and BACE-1 for Reducing Aβ in Alzheimer’s Disease: From In Silico to In Vivo. International Journal of Molecular Sciences, 23(21), 13098. https://doi.org/10.3390/ijms232113098
SwissDock - The online docking web server of the Swiss Institute of Bioinformatics - Docking. (n.d.). Swissdock.ch. Retrieved October 29, 2023, from http://swissdock.ch/docking
Tanzi, R. E. (2012). The Genetics of Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 2(10), a006296–a006296. https://doi.org/10.1101/cshperspect.a006296
Trang, A., & Khandhar, P. B. (2020). Physiology, Acetylcholinesterase. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK539735/#:~:text=Acetylcholinesterase%20(AChE)%20is%20a%20cholinergic
Vassar, R., Kovacs, D. M., Yan, R., & Wong, P. C. (2009). The -Secretase Enzyme BACE in Health and Alzheimer’s Disease: Regulation, Cell Biology, Function, and Therapeutic Potential. Journal of Neuroscience, 29(41), 12787–12794. https://doi.org/10.1523/jneurosci.3657-09.2009
Zentrum für Bioinformatik: Universität Hamburg - Proteins Plus Server. (n.d.). Proteins.plus. https://proteins.plus