Academic publishing in Europe and N. America

Archive Publication ethics Submission Payment Contacts
In the original languageTranslation into English

Identification of New Differential Expressed Genes of Esophageal Cancer


Liangtao Song

Rubric:General Biology


 Esophageal cancer (ESCA) is a type of gastrointestinal malignancy. It has one of the lowest survival rates among all types of cancer. Exploring ESCA related genes can help reveal the mechanism of ESCA occurrence and development and develop new diagnostic biomarkers and therapeutic targets. In the current study, three genes including ADCY3, CAB39L and TCOF1 were identified by bioinformatics analysis to show differential expression in ESCA and the adjacent normal tissues. Among the three genes, ADCY3 and TCOF1 were up-regulated, whereas CAB39L was down-regulated in the cancerous tissues. Survival analysis suggests that the expression levels of these genes have no impact on overall survival when analyzed individually. However, in combination analysis, patients with low expression of ADCY3 but high expression of TCOF1 show severe adverse outcomes with the lowest survival level. Therefore, the result suggests the combination of these genes could act as biomarkers for prognostic evaluation.


Esophageal cancer
differential expression.


Liangtao Song


  1. Watanabe, M., Otake, R., Kozuki, R., Toihata, T., Takahashi, K., Okamura, A., & Imamura, Y. (2020). Recent progress in multidisciplinary treatment for patients with esophageal cancer. Surgical Today, 50(1), 12-20.
  2. Huang, F. L., & Yu, S. J. (2018). Esophageal cancer: Risk factors, genetic association, and treatment. Asian Journal of Surgery, 41(3), 210-215.
  3. Lewis, S., & Lukovic, J. (2022). Neoadjuvant Therapy in Esophageal Cancer. Thoracic Surgery Clinics, 32(4), 447-456.
  4. Domper Arnal, M. J., Ferrández Arenas, Á., & Lanas Arbeloa, Á. (2015). Esophageal cancer: Risk factors, screening and endoscopic treatment in Western and Eastern countries. World Journal of Gastroenterology, 21(26), 7933-7943.
  5. You, B. H., Yoon, J. H., Kang, H., & Lee, E. K. (2019). HERES, a lncRNA that regulates canonical and noncanonical Wnt signaling pathways via interaction with EZH2. Proceedings of the National Academy of Sciences of the United States of America, 116(49), 24620-24629.
  6. Barrett, T., & Others. (2013). NCBI GEO: Archive for functional genomics data sets—update. Nucleic Acids Research, 41(D1), D991–D995.
  7. Goldman, M. J., Craft, B., Hastie, M., et al. (2020). Visualizing and interpreting cancer genomics data via the Xena platform. Nature Biotechnology.
  8. Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W., Lane, H. C., Imamichi, T., & Chang, W. (2022). DAVID: A web server for functional enrichment analysis and functional annotation of gene lists. Nucleic Acids Research, 50(W1), W216-W221.
  9. Chandrashekar, D. S., Karthikeyan, S. K., Korla, P. K., Patel, H., Shovon, A. R., Athar, M., Netto, G. J., Qin, Z. S., Kumar, S., Manne, U., Creighton, C. J., Varambally, S. (2022). UALCAN: An update to the integrated cancer data analysis platform. Neoplasia, 25, 18-27.
  10. Saeed, S., Bonnefond, A., Tamanini, F., Mirza, M. U., Manzoor, J., Janjua, Q. M., Din, S. M., Gaitan, J., Milochau, A., Durand, E., Vaillant, E., Haseeb, A., De Graeve, F., Rabearivelo, I., Sand, O., Queniat, G., Boutry, R., Schott, D. A., Ayesha, H., Ali, M., Khan, W. I., Butt, T. A., Rinne, T., Stumpel, C., Abderrahmani, A., Lang, J., Arslan, M., & Froguel, P. (2018). Loss-of-function mutations in ADCY3 cause monogenic severe obesity. Nature Genetics, 50(2), 175-179.
  11. Grarup, N., Moltke, I., Andersen, M. K., Dalby, M., Vitting-Seerup, K., Kern, T., Mahendran, Y., Jørsboe, E., Larsen, C. V. L., Dahl-Petersen, I. K., Gilly, A., Suveges, D., Dedoussis, G., Zeggini, E., Pedersen, O., Andersson, R., Bjerregaard, P., Jørgensen, M. E., Albrechtsen, A., & Hansen, T. (2018). Loss-of-function variants in ADCY3 increase risk of obesity and type 2 diabetes. Nature Genetics, 50(2), 172-174.
  12. Wu, Y., Xu, Z., Chen, X., Fu, G., Tian, J., Shi, Y., Sun, J., & Jin, B. (2023). Bioinformatics prediction and experimental verification identify CAB39L as a diagnostic and prognostic biomarker of kidney renal clear cell carcinoma. Medicina, 59(4), 716.
  13. Li, W., Wong, C. C., Zhang, X., Kang, W., Nakatsu, G., Zhao, Q., Chen, H., Go, M. Y. Y., Chiu, P. W. Y., Wang, X., Ji, J., Li, X., Cai, Z., Ng, E. K. W., & Yu, J. (2018). CAB39L elicited an anti-Warburg effect via a LKB1-AMPK-PGC1α axis to inhibit gastric tumorigenesis. Oncogene, 37(50), 6383-6398.
  14. Choi, M. R., An, C. H., Yoo, N. J., & Lee, S. H. (2016). Frameshift mutations of CAB39L, an activator of LKB1 tumor suppressor, in gastric and colorectal cancers. Pathology Oncology Research, 22(1), 225-226.
  15. Wu, C., Xia, D., Wang, D., Wang, S., Sun, Z., Xu, B., Zhang, D. (2022). TCOF1 coordinates oncogenic activation and rRNA production and promotes tumorigenesis in HCC. Cancer Science, 113(2), 553-564.
  16. Marszałek-Kruk, B. A., Wójcicki, P., Dowgierd, K., & Śmigiel, R. (2021). Treacher Collins Syndrome: Genetics, Clinical Features, and Management. Genes, 12(9), 1392.

Other articles of the issue

Patrick Ming, Moustafa T. Gabr A computational study on the efficacy of small molecules as dual inhibitors for β-secretase 1 and acetylcholinesterase as Alzheimer’s disease therapeutics
About us Journals Books
Publication ethics Terms of use of services Privacy policy
Copyright 2013-2024 Premier Publishing s.r.o.
Praha 8 - Karlín, Lyčkovo nám. 508/7, PSČ 18600, Czech Republic