Academic publishing in Europe and N. America

Archive Publication ethics Submission Payment Contacts
In the original languageTranslation into English

HTRA1-targeted small molecules as therapies for Alzheimer's disease.

Authors

William Lin

Rubric:Biology
1505
1
Download articleQuote
1505
1

Annotation

Alzheimer’s disease remains one of the most pressing neurodegenerative disorders, with limited treatment options, making the identification of novel therapeutic targets a crucial research challenge. In this study, we focused on the HtrA serine peptidase 1 (HTRA1) receptor, which plays a key role in disease pathology. First, we applied three complementary binding-site prediction tools—DogSiteScorer (DOG algorithm), FTSite (FFT solvent mapping), and PrankWeb (PRANK deep learning)—to the HTRA1 crystal structure, identifying five high-confidence pockets. Next, a pharmacophore model was built in Pharmit to capture key hydrogen bond donors/acceptors and hydrophobic/aromatic features; screening of a ~150,000-compound library yielded 15 diverse candidates. These 15 ligands were docked using SwissDock and ranked by estimated binding free energy (ΔG) and full‑fitness scores. The top five compounds (ΔG ≤ –7.5 kcal/mol, exhibiting consistent hydrogen bonds with active-site residues) advanced to ADME and toxicity evaluation. ADME properties were predicted via SwissADME, enforcing Lipinski’s Rule of Five and Veber’s rules (TPSA ≤ 140 Ų; ≤ 10 rotatable bonds), while toxicity risks were assessed using ProTox‑3 (hepatotoxicity, carcinogenicity, LD₅₀). Finally, molecular dynamics simulations (100‑ns GROMACS runs) on the best three candidates (GlideScores < –8.5 kcal/mol; RMSD < 2 Å; ≥ 80% key H‑bond occupancy) confirmed stable binding. These three lead molecules, selected for their optimal binding affinity, dynamic stability, and favorable ADME/toxicity profiles, now proceed to in vitro validation—paving the way toward a targeted Alzheimer’s therapy with high efficacy and minimal side effects.

Keywords

Alzheimer's disease
small molecules
drug discovery
pharmacophore
HTRA1
virtual screening

Authors

William Lin

References:

Alzheimer’s Association. (n.d.). Medications for memory, cognition & dementia-related behaviors. https://www.alz.org/alzheimers-dementia/treatments/medications-for-memory

Bartus, R. T., Dean, R. L., Beer, B., & Lippa, A. S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science, 217(4558), 408–414. https://doi.org/10.1126/science.7046051

Chen, S., Puri, A., Bell, B., Fritsche, J., Palacios, H. H., Balch, M., Sprunger, M. L., Howard, M. K., Ryan, J. J., Haines, J. N., Patti, G. J., Davis, A. A., & Jackrel, M. E. (2024). HTRA1 disaggregates α-synuclein amyloid fibrils and converts them into non-toxic and seeding incompetent species. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-46538-8

Cummings, J., Lee, G., Zhong, K., Fonseca, J., & Taghva, K. (2021). Alzheimer’s disease drug development pipeline: 2021. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 7(1), e12179. https://doi.org/10.1002/trc2.12179

Hardy, J. A., & Higgins, G. A. (1992). Alzheimer’s disease: The amyloid cascade hypothesis. Science, 256(5054), 184–185. https://doi.org/10.1126/science.1566067

Hampel, H., Mesulam, M. M., Cuello, A. C., Farlow, M. R., Giacobini, E., Grossberg, G. T., Khachaturian, A. S., Vergallo, A., & Cummings, J. L. (2018). The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain, 141(7), 1917–1933. https://doi.org/10.1093/brain/awy132

Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F., Feinstein, D. L., Jacobs, A. H., Wyss-Coray, T., Vitorica, J., Ransohoff, R. M., Herrup, K., Frautschy, S. A., Finsen, B., Brown, G. C., Verkhratsky, A., Yamanaka, K., Koistinaho, J., Latz, E., Halle, A., … Kummer, M. P. (2015). Neuroinflammation in Alzheimer’s disease. The Lancet Neurology, 14(4), 388–405. https://doi.org/10.1016/S1474-4422(15)70016-5

Heppner, F. L., Ransohoff, R. M., & Becher, B. (2015). Immune attack: The role of inflammation in Alzheimer disease. Nature Reviews Neuroscience, 16(6), 358–372. https://doi.org/10.1038/nrn3880

Knopman, D. S., Jones, D. T., & Greicius, M. D. (2021). Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2020. Alzheimer’s & Dementia, 17(4), 696–701. https://doi.org/10.1002/alz.12213

Kurkinen, M., Fułek, M., Fułek, K., Beszłej, J. A., Kurpas, D., & Leszek, J. (2023). The amyloid cascade hypothesis in Alzheimer’s disease: Should we change our thinking? Biomolecules, 13(3), 453. https://doi.org/10.3390/biom13030453

Lecca, D., Jung, Y., Scerba, M., Hwang, I., Kim, Y., Kim, S., Modrow, S., Tweedie, D., Hsueh, S., Liu, D., Luo, W., Glotfelty, E., Li, Y., Wang, J., Luo, Y., Hoffer, B., Kim, D., McDevitt, R., & Greig, N. (2022). Role of chronic neuroinflammation in neuroplasticity and cognitive function: A hypothesis. Alzheimer’s & Dementia, 18(11), 2327–2340. https://doi.org/10.1002/alz.12610

Orhan, I. E. (2021). Cholinesterase inhibitory potential of quercetin towards Alzheimer’s disease—A promising natural molecule or fashion of the day? A narrowed review. Current Neuropharmacology, 19(12), 2205–2213. https://doi.org/10.2174/1570159x18666201119153807

Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C. E., Cummings, J., & van der Flier, W. M. (2021). Alzheimer’s disease. The Lancet, 397(10284), 1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4

Selkoe, D. J., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine, 8(6), 595–608. https://doi.org/10.15252/emmm.201606210

Zurawa-Janicka, D., Skorko-Glonek, J., & Lipinska, B. (2010). HtrA proteins as targets in therapy of cancer and other diseases. Expert Opinion on Therapeutic Targets, 14(7), 665–679. https://doi.org/10.1517/14728222.2010.487867

Other articles of the issue

Kadyrova Dilbar Abdullaevna, Mirkhamidova Parida, Shakhmurova Gulnara Abdullaevna, Ziyamukhamedova Sabohat Abdullaevna MOLECULAR MECHANISMS OF AGING IN THYROID CELLS
Download article in PDF1524 views
cc-license
About us Journals Books
Publication ethics Terms of use of services Privacy policy
Copyright 2013-2025 Premier Publishing s.r.o.
Praha 8 - Karlín, Lyčkovo nám. 508/7, PSČ 18600, Czech Republic pub@ppublishing.org