HTRA1-targeted small molecules as therapies for Alzheimer's disease.
Authors
William Lin

Share
Annotation
Alzheimer’s disease remains one of the most pressing neurodegenerative disorders, with limited treatment options, making the identification of novel therapeutic targets a crucial research challenge. In this study, we focused on the HtrA serine peptidase 1 (HTRA1) receptor, which plays a key role in disease pathology. First, we applied three complementary binding-site prediction tools—DogSiteScorer (DOG algorithm), FTSite (FFT solvent mapping), and PrankWeb (PRANK deep learning)—to the HTRA1 crystal structure, identifying five high-confidence pockets. Next, a pharmacophore model was built in Pharmit to capture key hydrogen bond donors/acceptors and hydrophobic/aromatic features; screening of a ~150,000-compound library yielded 15 diverse candidates. These 15 ligands were docked using SwissDock and ranked by estimated binding free energy (ΔG) and full‑fitness scores. The top five compounds (ΔG ≤ –7.5 kcal/mol, exhibiting consistent hydrogen bonds with active-site residues) advanced to ADME and toxicity evaluation. ADME properties were predicted via SwissADME, enforcing Lipinski’s Rule of Five and Veber’s rules (TPSA ≤ 140 Ų; ≤ 10 rotatable bonds), while toxicity risks were assessed using ProTox‑3 (hepatotoxicity, carcinogenicity, LD₅₀). Finally, molecular dynamics simulations (100‑ns GROMACS runs) on the best three candidates (GlideScores < –8.5 kcal/mol; RMSD < 2 Å; ≥ 80% key H‑bond occupancy) confirmed stable binding. These three lead molecules, selected for their optimal binding affinity, dynamic stability, and favorable ADME/toxicity profiles, now proceed to in vitro validation—paving the way toward a targeted Alzheimer’s therapy with high efficacy and minimal side effects.
Keywords
Authors
William Lin

Share
References:
Alzheimer’s Association. (n.d.). Medications for memory, cognition & dementia-related behaviors. https://www.alz.org/alzheimers-dementia/treatments/medications-for-memory
Bartus, R. T., Dean, R. L., Beer, B., & Lippa, A. S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science, 217(4558), 408–414. https://doi.org/10.1126/science.7046051
Chen, S., Puri, A., Bell, B., Fritsche, J., Palacios, H. H., Balch, M., Sprunger, M. L., Howard, M. K., Ryan, J. J., Haines, J. N., Patti, G. J., Davis, A. A., & Jackrel, M. E. (2024). HTRA1 disaggregates α-synuclein amyloid fibrils and converts them into non-toxic and seeding incompetent species. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-46538-8
Cummings, J., Lee, G., Zhong, K., Fonseca, J., & Taghva, K. (2021). Alzheimer’s disease drug development pipeline: 2021. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 7(1), e12179. https://doi.org/10.1002/trc2.12179
Hardy, J. A., & Higgins, G. A. (1992). Alzheimer’s disease: The amyloid cascade hypothesis. Science, 256(5054), 184–185. https://doi.org/10.1126/science.1566067
Hampel, H., Mesulam, M. M., Cuello, A. C., Farlow, M. R., Giacobini, E., Grossberg, G. T., Khachaturian, A. S., Vergallo, A., & Cummings, J. L. (2018). The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain, 141(7), 1917–1933. https://doi.org/10.1093/brain/awy132
Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F., Feinstein, D. L., Jacobs, A. H., Wyss-Coray, T., Vitorica, J., Ransohoff, R. M., Herrup, K., Frautschy, S. A., Finsen, B., Brown, G. C., Verkhratsky, A., Yamanaka, K., Koistinaho, J., Latz, E., Halle, A., … Kummer, M. P. (2015). Neuroinflammation in Alzheimer’s disease. The Lancet Neurology, 14(4), 388–405. https://doi.org/10.1016/S1474-4422(15)70016-5
Heppner, F. L., Ransohoff, R. M., & Becher, B. (2015). Immune attack: The role of inflammation in Alzheimer disease. Nature Reviews Neuroscience, 16(6), 358–372. https://doi.org/10.1038/nrn3880
Knopman, D. S., Jones, D. T., & Greicius, M. D. (2021). Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2020. Alzheimer’s & Dementia, 17(4), 696–701. https://doi.org/10.1002/alz.12213
Kurkinen, M., Fułek, M., Fułek, K., Beszłej, J. A., Kurpas, D., & Leszek, J. (2023). The amyloid cascade hypothesis in Alzheimer’s disease: Should we change our thinking? Biomolecules, 13(3), 453. https://doi.org/10.3390/biom13030453
Lecca, D., Jung, Y., Scerba, M., Hwang, I., Kim, Y., Kim, S., Modrow, S., Tweedie, D., Hsueh, S., Liu, D., Luo, W., Glotfelty, E., Li, Y., Wang, J., Luo, Y., Hoffer, B., Kim, D., McDevitt, R., & Greig, N. (2022). Role of chronic neuroinflammation in neuroplasticity and cognitive function: A hypothesis. Alzheimer’s & Dementia, 18(11), 2327–2340. https://doi.org/10.1002/alz.12610
Orhan, I. E. (2021). Cholinesterase inhibitory potential of quercetin towards Alzheimer’s disease—A promising natural molecule or fashion of the day? A narrowed review. Current Neuropharmacology, 19(12), 2205–2213. https://doi.org/10.2174/1570159x18666201119153807
Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C. E., Cummings, J., & van der Flier, W. M. (2021). Alzheimer’s disease. The Lancet, 397(10284), 1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4
Selkoe, D. J., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine, 8(6), 595–608. https://doi.org/10.15252/emmm.201606210
Zurawa-Janicka, D., Skorko-Glonek, J., & Lipinska, B. (2010). HtrA proteins as targets in therapy of cancer and other diseases. Expert Opinion on Therapeutic Targets, 14(7), 665–679. https://doi.org/10.1517/14728222.2010.487867
