POLYSACCHARIDE-BASED CROSSLINKED GEL MATERIALS AND THEIR PROPERTIES
Authors
Normakhamatov Nodirali Sakhobataliyevich, Turaev Abbaskhan Sabirkhanovich, Boydedaev Azizbek Anvarjon ugli, Mukhitdinov Bakhtiyor Ikromovich, Amonova Dilnoza Mukhtarovna
Share
Annotation
: The article presents research on obtaining gel-based delivery systems from hyaluronic acid and low molecular weight chitosan in H2O and DMF environments, utilizing activators ClMPI/HOBt. It was determined that the obtained gel-based delivery systems form saturation curves at the highest percentage in aqueous solution. Additionally, studies on the acute toxicity of the gel-based delivery systems revealed that these samples belong to class VI-non-toxic compounds, and it was found during the experiments that the hemostatic properties of the obtained gel-based delivery systems are 3.0 times higher compared to the control group.
Keywords
Authors
Normakhamatov Nodirali Sakhobataliyevich, Turaev Abbaskhan Sabirkhanovich, Boydedaev Azizbek Anvarjon ugli, Mukhitdinov Bakhtiyor Ikromovich, Amonova Dilnoza Mukhtarovna
Share
References:
Bencherif, S. A., Srinivasan, A., Horkay, F., Hollinger, J. O., Matyjaszewski, K., & Washburn, N. R. (2008). Influence of the degree of methacrylation on hyaluronic acid hydrogels properties. Biomaterials, 29(12), 1739–1749. https://doi.org/10.1016/j.biomaterials.2007.11.047
Chistyakov, D. V., Astakhova, A. A., Azbukina, N. V., Goriainov, S. V., Chistyakov, V. V., & Sergeeva, M. G. (2019). High and low molecular weight hyaluronic acid differentially influences oxylipins synthesis in course of neuroinflammation. International Journal of Molecular Sciences, 20(16). https://doi.org/10.3390/ijms20163894
Chokradjaroen, C., Theeramunkong, S., Yui, H., Saito, N., & Rujiravanit, R. (2018). Cytotoxicity against cancer cells of chitosan oligosaccharides prepared from chitosan powder degraded by electrical discharge plasma. Carbohydrate Polymers, 201, 20–30. https://doi.org/10.1016/J.CARBPOL.2018.08.037
Drury, J. L., & Mooney, D. J. (2003). Hydrogels for tissue engineering : scaffold design variables and applications. 24, 4337–4351. https://doi.org/10.1016/S0142-9612(03)00340-5
Gao, Y., Sun, Y., Yang, H., Qiu, P., Cong, Z., Zou, Y., Song, L., Guo, J., & Anastassiades, T. P. (2019). A Low Molecular Weight Hyaluronic Acid Derivative Accelerates Excisional Wound Healing by Modulating Pro-Inflammation, Promoting Epithelialization and Neovascularization, and Remodeling Collagen. International Journal of Molecular Sciences, 20(15), 3722(1-19). https://doi.org/10.3390/ijms20153722
Guo, L., Chai, Y., Zhou, F., & Wang, P. (2021). Preparation and Properties of Hyaluronic Acid Hydrogel Modified by L-cysteine Hydrochloride. IOP Conference Series: Earth and Environmental Science, 651(4). https://doi.org/10.1088/1755-1315/651/4/042022
Hoffman, A. S. (2002). Hydrogels for biomedical applications. 43, 3–12.
Lee, H.-W., Park, Y.-S., Jung, J.-S., & Shin, W.-S. (2002). Chitosan oligosaccharides, dp 2–8, have prebiotic effect on the Bifidobacterium bifidium and Lactobacillus sp. Anaerobe, 8(6), 319–324. https://doi.org/10.1016/S1075-9964(03)00030-1
Nikjoo, D., van der Zwaan, I., Brülls, M., Tehler, U., & Frenning, G. (2021). Hyaluronic acid hydrogels for controlled pulmonary drug delivery—a particle engineering approach. Pharmaceutics, 13(11). https://doi.org/10.3390/pharmaceutics13111878
Toole, B., Ghatak, S., & Misra, S. (2008). Hyaluronan Oligosaccharides as a Potential Anticancer Therapeutic. Current Pharmaceutical Biotechnology, 9(4), 249–252. https://doi.org/10.2174/138920108785161569
Xue, Y., Chen, H., Xu, C., Yu, D., Xu, H., & Hu, Y. (2020). Synthesis of hyaluronic acid hydrogels by crosslinking the mixture of high-molecular-weight hyaluronic acid and low-molecular-weight hyaluronic acid with 1,4-butanediol diglycidyl ether. RSC Advances, 10(12), 7206–7213. https://doi.org/10.1039/C9RA09271D