Fine-Tuning Chromoprotein Expression for Bioproduction in Halomonas spp.
Authors
Ruiyan Huang
Share
Annotation
As bioproduction, especially microbial production, of substances became spotlighted, attention has been raised on developing tools to combat the unpredictable cellular synthetic activities that are often posed by the microbial cell factories. Fine-tuning tools, as one way to ameliorate cell factories for production, have become popular and effective for improving biosynthesis processes by achieving relatively stable regulatory purposes. In this study, a tunable expression system was created and utilized to control the level of expression of five single genes in the non-model bacteria Halomonas bluephagenesis, a member of Halomonas spp. and a sustainable and low-cost bioengineering and biomanufacturing platform for “next-generation industrial biotechnology” (NGIB). To better visualize results of the inducible flux regulation of this multiple inducible expression system which is designed to control five genes simultaneously, chromoprotein single genes were expressed and regulated through various combinations of induction concentration. The results demonstrated the system’s ability to regulate expression of multiple individual genes at the same time. The intensely visible chromoprotein production of varied colors and the colorful bacteria paintings from the visual results also proved the viability of this system in Halomonas bluephagenesis, the utilization of which contributes to a more cost-effective and waste-reducing solution to resource waste and cost issues of current industrial biotechnology. Overall, this study reveals the feasibility of the desirable tuning system for efficacious expression regulation of target genes and allows for further exploration and metabolic flux optimization in the bioproduction of other substances to allow more stable bioproduction processes in synthetic biology.
Keywords
Authors
Ruiyan Huang
Share
References:
Alieva, N. O., Konzen, K. A., Field, S. F., Meleshkevitch, E. A., Hunt, M. E., Beltran-Ramirez, V., Miller, D. J., Wiedenmann, J., Salih, A., & Matz, M. V. (2008). Diversity and Evolution of Coral Fluorescent Proteins. PLoS ONE, 3(7), e2680. https://doi.org/10.1371/journal.pone.0002680
Liljeruhm, J., Funk, S. K., Tietscher, S., Edlund, A. D., Jamal, S., Wistrand-Yuen, P., Dyrhage, K., Gynnå, A., Ivermark, K., Lövgren, J., Törnblom, V., Virtanen, A., Lundin, E. R., Wistrand-Yuen, E., & Forster, A. C. (2018). Engineering a palette of eukaryotic chromoproteins for bacterial synthetic biology. Journal of Biological Engineering, 12(1), 8. https://doi.org/10.1186/s13036-018-0100-0
Bao, L., Menon, P. N. K., Liljeruhm, J., & Forster, A. C. (2020). Overcoming chromoprotein limitations by engineering a red fluorescent protein. Analytical Biochemistry, 611, 113936. https://doi.org/10.1016/j.ab.2020.113936
Ahmed, F. H., Caputo, A. T., French, N. G., Peat, T. S., Whitfield, J., Warden, A. C., Newman, J., & Scott, C. (2022). Over the rainbow: Structural characterization of the chromoproteins gfasPurple, amilCP, spisPink and eforRed. Acta Crystallographica Section D Structural Biology, 78(5), 599–612. https://doi.org/10.1107/S2059798322002625
Chen, G.-Q., Zhang, X., Liu, X., Huang, W., Xie, Z., Han, J., Xu, T., Mitra, R., Zhou, C., Zhang, J., & Chen, T. (2022). Halomonas spp., as chassis for low-cost production of chemicals. Applied Microbiology and Biotechnology, 106(21), 6977–6992. https://doi.org/10.1007/s00253-022-12215-3
Lozano Terol, G., Gallego-Jara, J., Sola Martínez, R. A., Martínez Vivancos, A., Cánovas Díaz, M., & De Diego Puente, T. (2021). Impact of the Expression System on Recombinant Protein Production in Escherichia coli BL21. Frontiers in Microbiology, 12, 682001. https://doi.org/10.3389/fmicb.2021.682001
7. Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J., & Voigt, C. A. (2019). Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. Nature Chemical Biology, 15(2), 196–204. https://doi.org/10.1038/s41589-018-0168-3
Chen, G.-Q., & Jiang, X.-R. (2018). Next generation industrial biotechnology based on extremophilic bacteria. Current Opinion in Biotechnology, 50, 94–100. https://doi.org/10.1016/j.copbio.2017.11.016
Liljeruhm, J., Funk, S. K., Tietscher, S., Edlund, A. D., Jamal, S., Wistrand-Yuen, P., Dyrhage, K., Gynnå, A., Ivermark, K., Lövgren, J., Törnblom, V., Virtanen, A., Lundin, E. R., Wistrand-Yuen, E., & Forster, A. C. (2018). Engineering a palette of eukaryotic chromoproteins for bacterial synthetic biology. Journal of Biological Engineering, 12(1), 8. https://doi.org/10.1186/s13036-018-0100-0
Lozano Terol, G., Gallego-Jara, J., Sola Martínez, R. A., Martínez Vivancos, A., Cánovas Díaz, M., & De Diego Puente, T. (2021). Impact of the Expression System on Recombinant Protein Production in Escherichia coli BL21. Frontiers in Microbiology, 12, 682001. https://doi.org/10.3389/fmicb.2021.682001
Pang, Q., Han, H., Liu, X., Wang, Z., Liang, Q., Hou, J., Qi, Q., & Wang, Q. (2020). In vivo evolutionary engineering of riboswitch with high-threshold for N-acetylneuraminic acid production. Metabolic Engineering, 59, 36–43. https://doi.org/10.1016/j.ymben.2020.01.002
Tan, D., Xue, Y.-S., Aibaidula, G., & Chen, G.-Q. (2011). Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresource Technology, 102(17), 8130–8136. https://doi.org/10.1016/j.biortech.2011.05.068
Ye, J.-W., & Chen, G.-Q. (2021). Halomonas as a chassis. Essays in Biochemistry, 65(2), 393–403. https://doi.org/10.1042/EBC20200159