MASS-CHROMATOGRAPHIC ANALYSIS OF METABOLITES OF THE FUNGUS TRICHOLOMA CALIGATUM
Authors
Hasanova Madina, Meyliyeva Muxlisa, Ruziyeva Zarnigor, Gulboyeva Dilafruz, Kamolov Luqmon

Share
Annotation
In recent years, macrofungi are famous for their unique nutrient retention, moreover, for the production of biologically active substances such as microfungi. In our study, we aimed to study the biologically active substances of the fungus Tricholoma caliogatum and in this study, the insoluble residue GC–MS (gas chromatography — mass spectrometry) was analyzed in organic solvents (hexane, chloromine, methanol) that separated during the last steps of the alcohol (ethanol) extract process of the fungus Tricholoma caligatum. According to the analysis results, the residual revealed the following major components: 1-(3,5-dimethyl-1-adamantanoyl)semicarbazide, Amphetamine-3-methyl cyclobutanol, N-Acetyl-2-methylamphetamine, Amphetamine-3-methyl acetate, N-Acetyl-4-methylamphetamine, Rhodopin, Octadecanoic acid, 2-hydroxy-1,3-propanedilyl di-ester, Hexadecanoic acid, 1-(hydroxymethyl)-1,2-ethanyyl ester and other lipid and carotenoid derivatives of high molecular weight. The different natures of the compounds identified (amine/alkaloid-like, carotenoid pigments, fatty acid esters, and semicarbazide derivatives) indicate that the residue is a complex organic polymer-and-conjugate mixture.
Keywords
Authors
Hasanova Madina, Meyliyeva Muxlisa, Ruziyeva Zarnigor, Gulboyeva Dilafruz, Kamolov Luqmon

Share
References:
Erol, E., Ali, Z., Öztürk, M., Khan, S., Khan, I. Inhibition of iNOS Induction and NF-κB Activation by Taste Compounds from the Edible Mushroom Tricholoma caligatum. Records of Natural Products, 14(1) DOI http://doi.org/10.25135/rnp.139.19.04.1263
Taşkın, H., Çelik, Z. D., Bozok, F., Cabaroğlu, T., & Büyükalaca, S. First Report on Volatile Composition of Tricholoma anatolicum in Comparison with Tricholoma caligatum. Records of Natural Products, 13(6) DOI: http://doi.org/1025135/rnp.122.18.12.1095
Gillardoni, G., et al. New Tricholomalides D–G from the Mushroom Tricholoma. Natural Product Research, 37(5) DOI: http://doi.org/10.3390/molecules28217446
Zhao, M., Yuan, S., Li, Z., Liu, C., & Zhang, R. Review of the Structural Characteristics and Biological Activities of Tricholoma Secondary Metabolites (2018–2023). DOI: Molecules, 29(19) DOI: http://doi.org/10.3390/molecules29194719
Stojek, K., et al. Factors affecting composition of fatty acids in wild-growing macrofungi. Mycologia DOI: http://doi.org/10.1080/00275514.2024.23250456
Yu, C. X., et al. Composition and contents of fatty acids and amino acids in edible mushrooms. Foods, 12(16) DOI: http://doi.org/10.3390/foods12162985
Broser, M., et al. Diversity of rhodopsin cyclases in zoospore-forming fungi. PNAS, 120(23) DOI: http://doi.org/10.1073/pnas.2310600120
Qin, Y., et al. Melanin in fungi: Advances in structure, biosynthesis and potential applications. Microbial Cell Factories, 23DOI: http://doi.org/10.1186/s12934024026148
Pandey, S., et al. Efficient production and characterization of melanin from fungal sources. Frontiers in Microbiology, 14 DOI: http://doi.org/10.3389/fmicb.2023.1320116
Saiz-Jimenez, C., et al. Analytical Pyrolysis of the Fungal Melanins from Ochroconis spp. Applied Sciences, 11(3) DOI: http://doi.org/10.3390/app11031198
Yu, W., et al. Metabolomic profiling of fungal extracts by GC-MS: methodology and pitfalls. Foods DOI: http://doi.org/10.3390/foods12162985
Gutierrez-Reyes, C. D., et al. MS-based characterization of biomass-derived materials. Polymers, 17(5) DOI: http://doi.org/10.3390/polym17050856
Sun, Y., He, H., Wang, Q., Yang, X., Jiang, S., & Wang, D. A Review of Development and Utilization for Edible Fungal Polysaccharides. Polymers, 14(20) DOI: http://doi.org/10.3390/polym14204454
Clericuzio, M., et al. Secondary Metabolites Isolated from Tricholoma Species (Basidiomycota). Natural Product Communications, 13(9) DOI: http://doi.org/10.1177/1934578X18013009266
Roziyeva, Z. Q. Secondary metabolites of the fungus Tricholoma caligatum. Web of Journals.
Ichida, H., et al. (2023). Near-complete de novo assembly of Tricholoma bakamatsutake chromosomes. G3: Genes|Genomes|Genetics, 13(11). DOI: http://doi.org/10.1093/g3journal/jkad198
Muszyńska, B., Kała, K., Radović, J., Sułkowska-Ziaja, K., et al. (2018). Study of biological activity of Tricholoma equestre fruiting bodies and their safety for human. European Food Research and Technology, 244, 2255–2264. DOI: http://doi.org/10.1007/s00217-018-3134-0
Benazza-Bouregba, M., Savoie, J.-M., Fortas, Z., & Billette, C. (2016). A new record of Tricholoma caligatum from North Africa. Phytotaxa, 282(2), 119–128. DOI: http://doi.org/10.11646/phytotaxa.282.2.3
PubMed (2022–2023). Quantitative transcriptomic and metabolomic analyses of Tricholoma matsutake fruiting bodies. PubMed Central.
Gamboa-Becerra, R., Montoya, L., Bandala, V. M., Monribot-Villanueva, J. L., Guerrero-Analco, J. A., Ramos, A. (2024). Metabolomic profiling of Tricholoma mesoamericanum. International Journal of Food Science & Technology, 59(6), 4348–4358. DOI: http://doi.org/10.1111/ijfs.17121
