Academic publishing in Europe and N. America

Archive Publication ethics Submission Payment Contacts
In the original languageTranslation into English

GITR and Targeted Small Molecules for Cancer Immunotherapy

Authors

Vishresh Deepak

Rubric:General Biology
1142
5
Download articleQuote
1142
5

Annotation

While revolutionary cancer treatments see progress every day, cancer still remains a severe problem in our world. Immune checkpoint inhibitors, an advanced form of immunotherapy, is a treatment utilizing small molecules to override immune system checkpoints and enhance immune cell effector function. Glucocorticoid-induced TNFR-related (GITR) proteins are proteins expressed on various immune cells that can be activated to modulate cell function and impede immune cell suppression. Due to its potential role in enhancing immune system response to tumors, GITR and its ligand, GITRL, serve as strong potential drug targets for small molecules. This study aims to pre-clinically validate and screen GITR (and GITRL) as targets while identifying the most promising compounds for binding to the targets. The expensive, resource-dependent, and complex nature of drug discovery in research labs necessitates the need for a pre-clinical study. The research involves several computational methods to determine the feasibility of the target and compounds. The initial screening identifies possible binding sites on GITR and GITRL. Pharmacophore maps for GITR and GITRL were used to identify top molecular compounds for binding with GITR and GITRL. The energy of the compounds’ interactions at the potential binding sites were analyzed using SwissDock. Using the top 5 compounds for GITR with highest predicted interaction energy, drug property evaluation (ADME potential and Lipinski’s Rule validation) was conducted to further validate the compounds. The best compound for GITR was further evaluated to ensure safety and validity of compounds through toxicity prediction using ProTox 3.0. These computational methods result in the best compounds to be analyzed further clinically using both invivo and invitro methods. The results of this experiment streamline the initial screening of the targets and compounds as well as serve as the baseline for furthering immunotherapy techniques.

Keywords

GITR
GITRL
drug discovery
cancer
immunotherapy
immune checkpoints

References:

Li B, Shao H, Gao L, Li H, Sheng H, Zhu L. Nano-drug co-delivery system of natural active ingredients and chemotherapy drugs for cancer treatment: a review. Drug Deliv. 2022 Dec;29(1):2130-2161. doi: 10.1080/10717544.2022.2094498. Erratum in: Drug Deliv. 2022 Dec;29(1):3051. doi: 10.1080/10717544.2022.2127213. PMID: 35815678; PMCID: PMC9275501. Link

Wei G, Wang Y, Yang G, Wang Y, Ju R. Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics. 2021 Apr 19;11(13):6370-6392. doi: 10.7150/thno.57828. PMID: 33995663; PMCID: PMC8120226. Link

Chern YJ, Tai IT. Adaptive response of resistant cancer cells to chemotherapy. Cancer Biol Med. 2020 Nov 15;17(4):842-863. doi: 10.20892/j.issn.2095-3941.2020.0005. Epub 2020 Dec 15. PMID: 33299639; PMCID: PMC7721100. Link

Gong L, Zhang Y, Liu C, Zhang M, Han S. Application of Radiosensitizers in Cancer Radiotherapy. Int J Nanomedicine. 2021 Feb 12;16:1083-1102. doi: 10.2147/IJN.S290438. Erratum in: Int J Nanomedicine. 2021 Dec 16;16:8139-8140. doi: 10.2147/IJN.S352169. PMID: 33603370; PMCID: PMC7886779. Link

Bayat Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, Yeger H. Combination therapy in combating cancer. Oncotarget. 2017 Jun 6;8(23):38022-38043. doi: 10.18632/oncotarget.16723. PMID: 28410237; PMCID: PMC5514969. Link

Tan S, Li D, Zhu X. Cancer immunotherapy: Pros, cons and beyond. Biomed Pharmacother. 2020 Apr;124:109821. doi: 10.1016/j.biopha.2020.109821. Epub 2020 Jan 18. PMID: 31962285. Link

Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020 Aug;17(8):807-821. doi: 10.1038/s41423-020-0488-6. Epub 2020 Jul 1. PMID: 32612154; PMCID: PMC7395159. Link

Naimi A, Mohammed RN, Raji A, Chupradit S, Yumashev AV, Suksatan W, Shalaby MN, Thangavelu L, Kamrava S, Shomali N, Sohrabi AD, Adili A, Noroozi-Aghideh A, Razeghian E. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons. Cell Commun Signal. 2022 Apr 7;20(1):44. doi: 10.1186/s12964-022-00854-y. PMID: 35392976; PMCID: PMC8991803. Link

Papież MA, Krzyściak W. Biological Therapies in the Treatment of Cancer-Update and New Directions. Int J Mol Sci. 2021 Oct 28;22(21):11694. doi: 10.3390/ijms222111694. PMID: 34769123; PMCID: PMC8583892. Link

Cha JH, Chan LC, Song MS, Hung MC. New Approaches on Cancer Immunotherapy. Cold Spring Harb Perspect Med. 2020 Aug 3;10(8):a036863. doi: 10.1101/cshperspect.a036863. PMID: 31615865; PMCID: PMC7156317. Link

Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021 Apr 6;11(4):69. doi: 10.1038/s41408-021-00459-7. PMID: 33824268; PMCID: PMC8024391. Link

Burke KP, Patterson DG, Liang D, Sharpe AH. Immune checkpoint receptors in autoimmunity. Curr Opin Immunol. 2023 Feb;80:102283. doi: 10.1016/j.coi.2023.102283. Epub 2023 Jan 28. PMID: 36709596; PMCID: PMC10019320. Link

Chow A, Perica K, Klebanoff CA, Wolchok JD. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat Rev Clin Oncol. 2022 Dec;19(12):775-790. doi: 10.1038/s41571-022-00689-z. Epub 2022 Oct 10. PMID: 36216928; PMCID: PMC10984554. Link

Miggelbrink AM, Jackson JD, Lorrey SJ, Srinivasan ES, Waibl-Polania J, Wilkinson DS, Fecci PE. CD4 T-Cell Exhaustion: Does It Exist and What Are Its Roles in Cancer? Clin Cancer Res. 2021 Nov 1;27(21):5742-5752. doi: 10.1158/1078-0432.CCR-21-0206. Epub 2021 Jun 14. PMID: 34127507; PMCID: PMC8563372. Link

Davar D, Zappasodi R. Targeting GITR in cancer immunotherapy - there is no perfect knowledge. Oncotarget. 2023 Jun 19;14:614-621. doi: 10.18632/oncotarget.28461. PMID: 37335294; PMCID: PMC10278658. Link

​​Buzzatti G, Dellepiane C, Del Mastro L. New emerging targets in cancer immunotherapy: the role of GITR. ESMO Open. 2020 Aug;4(Suppl 3):e000738. doi: 10.1136/esmoopen-2020-000738. PMID: 32817129; PMCID: PMC7451269. Link

Krausz LT, Bianchini R, Ronchetti S, Fettucciari K, Nocentini G, Riccardi C. GITR-GITRL system, a novel player in shock and inflammation. ScientificWorldJournal. 2007 May 1;7:533-66. doi: 10.1100/tsw.2007.106. PMID: 17525820; PMCID: PMC5901298. Link

Nocentini G, Ronchetti S, Cuzzocrea S, Riccardi C. GITR/GITRL: more than an effector T cell co-stimulatory system. Eur J Immunol. 2007 May;37(5):1165-9. doi: 10.1002/eji.200636933. PMID: 17407102. Link

Schaer DA, Murphy JT, Wolchok JD. Modulation of GITR for cancer immunotherapy. Curr Opin Immunol. 2012 Apr;24(2):217-24. doi: 10.1016/j.coi.2011.12.011. Epub 2012 Jan 12. PMID: 22245556; PMCID: PMC3413251. Link

Knee DA, Hewes B, Brogdon JL. Rationale for anti-GITR cancer immunotherapy. Eur J Cancer. 2016 Nov;67:1-10. doi: 10.1016/j.ejca.2016.06.028. Epub 2016 Aug 31. PMID: 27591414. Link

Zappasodi R, Sirard C, Li Y, Budhu S, Abu-Akeel M, Liu C, Yang X, Zhong H, Newman W, Qi J, Wong P, Schaer D, Koon H, Velcheti V, Hellmann MD, Postow MA, Callahan MK, Wolchok JD, Merghoub T. Rational design of anti-GITR-based combination immunotherapy. Nat Med. 2019 May;25(5):759-766. doi: 10.1038/s41591-019-0420-8. Epub 2019 Apr 29. PMID: 31036879; PMCID: PMC7457830. Link

Schöning-Stierand, K.; Diedrich, K.; Ehrt, C.; Flachsenberg, F.; Graef, J.; Sieg, J.; Penner, P.; Poppinga, M.; Ungethüm, A.; Rarey, M. (2022). ProteinsPlus: a comprehensive collection of web-based molecular modeling tools. Nucleic Acids Research, 50:W611-W615.

Kozakov D, Grove LE, Hall DR, Bohnuud T, Mottarella SE, Luo L, Xia B, Beglov D, Vajda S The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins Nature Protocols 2015 10(5):733-755.

Ngan CH, Hall DR, Zerbe BS, Grove LE, Kozakov D, Vajda S FTSite: high accuracy detection of ligand binding sites on unbound protein structures Bioinformatics 2012 28: 286-287.

Brenke R, Kozakov D, Chuang GY, Beglov D, Hall D, Landon MR, Mattos C, Vajda S. Fragment-based identification of druggable 'hot spots' of proteins using Fourier domain correlation techniques. Bioinformatics. 2009 Mar 1

Dávid Jakubec, Petr Škoda, Radoslav Krivák, Marian Novotný and David Hoksza. PrankWeb 3: accelerated ligand-binding site predictions for experimental and modelled protein structures. Nucleic Acids Research. May 2022

Lukáš Jendele and Radoslav Krivák and Petr Škoda and Marian Novotný and David Hoksza. PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Research. May 2019

Radoslav Krivák and David Hoksza. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. Journal of Cheminformatics. Aug 2018

Other articles of the issue

Aytan Akhundova DEEP LEARNİNG ALGORİTHM FOR THE DİGİTAL DYNAMİC USM OF SUBACROMİAL IMPİNGEMENT SYNDROME
Download article in PDF529 views
cc-license
About us Journals Books
Publication ethics Terms of use of services Privacy policy
Copyright 2013-2025 Premier Publishing s.r.o.
Praha 8 - Karlín, Lyčkovo nám. 508/7, PSČ 18600, Czech Republic pub@ppublishing.org