Academic publishing in Europe and N. America

Archive Publication ethics Submission Payment Contacts
In the original languageTranslation into English

INFLUENCE OF CATALYST TYPE AND DOSAGE ON THE EFFICIENCY OF FUEL PRODUCTION FROM POLYMER WASTE PYROLYSIS

Authors

Saydaxmedov Shamshidinxoʻja, Muxtorov Nuriddin, Ergashev Yusuf

Rubric:Chemistry
1173
0
Download articleQuote
1173
0

Annotation

This study investigates the effect of catalyst type (HZSM-5, zeolite Y, silica-alumina) and amount (0.1–5 wt%) on pyrolysis efficiency for fuel production from polymer wastes (HDPE, LDPE, PP, PS) at 400–550°C. HZSM-5 at 1 wt% and 500°C maximized C5–C12 hydrocarbon selectivity (55.9% for PS), minimized coke deposition (2.1% for PP), and achieved high thermal efficiency (87.2% for LDPE). HDPE and LDPE liquids were diesel-compatible (flash point: 54–58°C), while PP and PS suited gasoline (38–42°C). Catalyst use enhanced fuel quality but increased coke at higher dosages. Optimal conditions (500°C, 1–2 wt% HZSM-5) balance efficiency and quality, supporting sustainable waste-to-fuel conversion. (120 words)

Keywords

Polymer waste
catalytic pyrolysis
fuel production
catalyst selectivity
thermal efficiency.

Authors

Saydaxmedov Shamshidinxoʻja, Muxtorov Nuriddin, Ergashev Yusuf

References:

Al-Salem, S. M., Antelava, A., Constantinou, A., Manos, G., & Dutta, A. (2017). A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). Journal of Environmental Management, 197, 177–198. https://doi.org/10.1016/j.jenvman.2017.03.084

Artetxe, M., Lopez, G., Amutio, M., Elordi, G., Olazar, M., & Bilbao, J. (2010). Operating conditions for the pyrolysis of poly-(ethylene terephthalate) in a conical spouted bed reactor. Industrial & Engineering Chemistry Research, 49(5), 2064–2069. https://doi.org/10.1021/ie901745a

Bagri, R., & Williams, P. T. (2002). Catalytic pyrolysis of polyethylene. Journal of Analytical and Applied Pyrolysis, 63(1), 29–41. https://doi.org/10.1016/S0165-2370(01)00139-5

Beltrame, P. L., Carniti, P., Audisio, G., & Bertini, F. (1989). Catalytic degradation of polymers: Part II—Degradation of polyethylene. Polymer Degradation and Stability, 26(3), 209–216. https://doi.org/10.1016/0141-3910(89)90085-4

Ding, F., Xiong, L., Luo, X., Chen, X., & Chen, Y. (2012). Catalytic pyrolysis of waste plastics over HZSM-5 zeolite. Energy & Fuels, 26(11), 7030–7037. https://doi.org/10.1021/ef3012638

Elordi, G., Olazar, M., Lopez, G., Amutio, M., Artetxe, M., Aguado, R., & Bilbao, J. (2009). Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts. Journal of Analytical and Applied Pyrolysis, 85(1–2), 345–351. https://doi.org/10.1016/j.jaap.2008.10.008

Garforth, A. A., Ali, S., Hernández-Martínez, J., & Akah, A. (2004). Feedstock recycling of polymer wastes by pyrolysis: A review. Current Opinion in Solid State and Materials Science, 8(6), 419–425. https://doi.org/10.1016/j.cossms.2005.04.003

Huang, W. C., Huang, M. S., Huang, C. F., Chen, C. C., & Ou, K. L. (2010). Thermochemical conversion of polymer wastes into hydrocarbon fuels over various fluidizing cracking catalysts. Fuel, 89(9), 2305–2316. https://doi.org/10.1016/j.fuel.2010.03.005

Jan, M. R., Shah, J., & Gulab, H. (2010). Catalytic degradation of waste high-density polyethylene into fuel products using a mixture of zeolites. Fuel, 89(8), 2037–2043. https://doi.org/10.1016/j.fuel.2010.01.013

Lee, K. H. (2009). Thermal and catalytic degradation of pyrolytic waxes from pyrolysis of plastic wastes. Journal of Analytical and Applied Pyrolysis, 85(1–2), 372–379. https://doi.org/10.1016/j.jaap.2008.11.033

Lin, Y. H., & Yang, M. H. (2007). Catalytic conversion of commingled polymer waste into chemicals and fuels using a two-stage reactor system. Applied Catalysis B: Environmental, 69(3–4), 145–153. https://doi.org/10.1016/j.apcatb.2006.06.011

Manos, G., Yusof, I. Y., Papayannakos, N., & Gangas, N. H. (2001). Catalytic cracking of polyethylene over zeolite mordenite with enhanced textural properties. Journal of Analytical and Applied Pyrolysis, 57(2), 249–259. https://doi.org/10.1016/S0165-2370(00)00144-3

Marcilla, A., Beltrán, M. I., & Navarro, R. (2009). Evolution of products during the degradation of polyethylene in a batch reactor. Journal of Analytical and Applied Pyrolysis, 86(1), 14–21. https://doi.org/10.1016/j.jaap.2009.03.006

Serrano, D. P., Aguado, J., Escola, J. M., & Rodríguez, J. M. (2003). Conversion of low-density polyethylene into petrochemical feedstocks using a continuous screw kiln reactor. Journal of Analytical and Applied Pyrolysis, 68–69, 481–494. https://doi.org/10.1016/S0165-2370(03)00063-9

Uddin, M. A., Koizumi, K., Murata, K., & Sakata, Y. (1997). Thermal and catalytic degradation of structurally different types of polyethylene into fuel oil. Polymer Degradation and Stability, 56(1), 37–44. https://doi.org/10.1016/S0141-3910(96)00191-4

Other articles of the issue

Otenova Farida Tolegenovna, Abilova Aizada Azamatovna, Baltabaev Muratbay Toremuratovich BOTANICAL AND MORPHOLOGICAL CHARACTERISTICS OF POPULUS PRUINOSA
Download article in PDF1295 views
cc-license
About us Journals Books
Publication ethics Terms of use of services Privacy policy
Copyright 2013-2025 Premier Publishing s.r.o.
Praha 8 - Karlín, Lyčkovo nám. 508/7, PSČ 18600, Czech Republic pub@ppublishing.org