INFLUENCE OF CATALYST TYPE AND DOSAGE ON THE EFFICIENCY OF FUEL PRODUCTION FROM POLYMER WASTE PYROLYSIS
Authors
Saydaxmedov Shamshidinxoʻja, Muxtorov Nuriddin, Ergashev Yusuf

Share
Annotation
This study investigates the effect of catalyst type (HZSM-5, zeolite Y, silica-alumina) and amount (0.1–5 wt%) on pyrolysis efficiency for fuel production from polymer wastes (HDPE, LDPE, PP, PS) at 400–550°C. HZSM-5 at 1 wt% and 500°C maximized C5–C12 hydrocarbon selectivity (55.9% for PS), minimized coke deposition (2.1% for PP), and achieved high thermal efficiency (87.2% for LDPE). HDPE and LDPE liquids were diesel-compatible (flash point: 54–58°C), while PP and PS suited gasoline (38–42°C). Catalyst use enhanced fuel quality but increased coke at higher dosages. Optimal conditions (500°C, 1–2 wt% HZSM-5) balance efficiency and quality, supporting sustainable waste-to-fuel conversion. (120 words)
Keywords
Authors
Saydaxmedov Shamshidinxoʻja, Muxtorov Nuriddin, Ergashev Yusuf

Share
References:
Al-Salem, S. M., Antelava, A., Constantinou, A., Manos, G., & Dutta, A. (2017). A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). Journal of Environmental Management, 197, 177–198. https://doi.org/10.1016/j.jenvman.2017.03.084
Artetxe, M., Lopez, G., Amutio, M., Elordi, G., Olazar, M., & Bilbao, J. (2010). Operating conditions for the pyrolysis of poly-(ethylene terephthalate) in a conical spouted bed reactor. Industrial & Engineering Chemistry Research, 49(5), 2064–2069. https://doi.org/10.1021/ie901745a
Bagri, R., & Williams, P. T. (2002). Catalytic pyrolysis of polyethylene. Journal of Analytical and Applied Pyrolysis, 63(1), 29–41. https://doi.org/10.1016/S0165-2370(01)00139-5
Beltrame, P. L., Carniti, P., Audisio, G., & Bertini, F. (1989). Catalytic degradation of polymers: Part II—Degradation of polyethylene. Polymer Degradation and Stability, 26(3), 209–216. https://doi.org/10.1016/0141-3910(89)90085-4
Ding, F., Xiong, L., Luo, X., Chen, X., & Chen, Y. (2012). Catalytic pyrolysis of waste plastics over HZSM-5 zeolite. Energy & Fuels, 26(11), 7030–7037. https://doi.org/10.1021/ef3012638
Elordi, G., Olazar, M., Lopez, G., Amutio, M., Artetxe, M., Aguado, R., & Bilbao, J. (2009). Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts. Journal of Analytical and Applied Pyrolysis, 85(1–2), 345–351. https://doi.org/10.1016/j.jaap.2008.10.008
Garforth, A. A., Ali, S., Hernández-Martínez, J., & Akah, A. (2004). Feedstock recycling of polymer wastes by pyrolysis: A review. Current Opinion in Solid State and Materials Science, 8(6), 419–425. https://doi.org/10.1016/j.cossms.2005.04.003
Huang, W. C., Huang, M. S., Huang, C. F., Chen, C. C., & Ou, K. L. (2010). Thermochemical conversion of polymer wastes into hydrocarbon fuels over various fluidizing cracking catalysts. Fuel, 89(9), 2305–2316. https://doi.org/10.1016/j.fuel.2010.03.005
Jan, M. R., Shah, J., & Gulab, H. (2010). Catalytic degradation of waste high-density polyethylene into fuel products using a mixture of zeolites. Fuel, 89(8), 2037–2043. https://doi.org/10.1016/j.fuel.2010.01.013
Lee, K. H. (2009). Thermal and catalytic degradation of pyrolytic waxes from pyrolysis of plastic wastes. Journal of Analytical and Applied Pyrolysis, 85(1–2), 372–379. https://doi.org/10.1016/j.jaap.2008.11.033
Lin, Y. H., & Yang, M. H. (2007). Catalytic conversion of commingled polymer waste into chemicals and fuels using a two-stage reactor system. Applied Catalysis B: Environmental, 69(3–4), 145–153. https://doi.org/10.1016/j.apcatb.2006.06.011
Manos, G., Yusof, I. Y., Papayannakos, N., & Gangas, N. H. (2001). Catalytic cracking of polyethylene over zeolite mordenite with enhanced textural properties. Journal of Analytical and Applied Pyrolysis, 57(2), 249–259. https://doi.org/10.1016/S0165-2370(00)00144-3
Marcilla, A., Beltrán, M. I., & Navarro, R. (2009). Evolution of products during the degradation of polyethylene in a batch reactor. Journal of Analytical and Applied Pyrolysis, 86(1), 14–21. https://doi.org/10.1016/j.jaap.2009.03.006
Serrano, D. P., Aguado, J., Escola, J. M., & Rodríguez, J. M. (2003). Conversion of low-density polyethylene into petrochemical feedstocks using a continuous screw kiln reactor. Journal of Analytical and Applied Pyrolysis, 68–69, 481–494. https://doi.org/10.1016/S0165-2370(03)00063-9
Uddin, M. A., Koizumi, K., Murata, K., & Sakata, Y. (1997). Thermal and catalytic degradation of structurally different types of polyethylene into fuel oil. Polymer Degradation and Stability, 56(1), 37–44. https://doi.org/10.1016/S0141-3910(96)00191-4
