OXIDATION KINETICS, THERMAL PROPERTIES, AND FUNCTIONAL ACTIVITY OF CARBOXYMETHYL INULIN
Authors
Abdullayev Otabek, Rakhmanberdiev Gappar, Khusenov Arslonnazar, Ashurov Mirshod

Share
Annotation
This study investigates the properties of dialdehyde carboxymethyl inulin samples obtained as a result of the periodate oxidation reaction of carboxymethyl inulin. The dependence of the oxidation process on time, the effect of the degree of substitution, and the selectivity of the reaction were analyzed. Thermal analysis was conducted to examine the thermal stability of inulin and its modified derivatives, identifying the influence of structure and functional groups on degradation.
Keywords
Authors
Abdullayev Otabek, Rakhmanberdiev Gappar, Khusenov Arslonnazar, Ashurov Mirshod

Share
References:
1. Chang-Qing Ruan, Xiaoou Kang, Kaifang Zeng Preparation of water-soluble dialdehyde cellulose enhanced chitosan coating and its application on the preservation of mandarin fruit // International Journal of Biological Macromolecules. 2022. V. 203. https://doi.org/10.1016/j.ijbiomac.2022.01.010.
2. Simona Káčerová, Monika Muchová, Hana Doudová, Lukáš Münster, Barbora Hanulíková, Kristýna Valášková, Věra Kašpárková, Ivo Kuřitka, Petr Humpolíček, Zdenka Víchová, Ondřej Vašíček, Jan Vícha Chitosan/dialdehyde cellulose hydrogels with covalently anchored polypyrrole: Novel conductive, antibacterial, antioxidant, immunomodulatory, and anti-inflammatory materials // Carbohydrate Polymers. 2024. V. 327. https://doi.org/10.1016/j.carbpol.2023.121640.
3. Wenjie Wang, Wen-Can Huang, Jie Zheng, Changhu Xue, Xiangzhao Mao Preparation and comparison of dialdehyde derivatives of polysaccharides as cross-linking agents // International Journal of Biological Macromolecules. 2023. V. 236. https://doi.org/10.1016/j.ijbiomac.2023.123913.
4. Wei Ding, Yanbei Wu Sustainable dialdehyde polysaccharides as versatile building blocks for fabricating functional materials: An overview // Carbohydrate Polymers 2020. V. 248. https://doi.org/10.1016/j.carbpol.2020.116801.
5. Wegrzynowska-Drzymalska K, Grebicka P, Mlynarczyk DT, Chelminiak-Dudkiewicz D, Kaczmarek H, Goslinski T, Ziegler-Borowska M. Crosslinking of Chitosan with Dialdehyde Chitosan as a New Approach for Biomedical Applications // Materials (Basel). 2020. V.13(15). doi: 10.3390/ma13153413.
6. Sherif M.A.S. Keshk, Ahmed M. Ramadan, Abdullah G. Al-Sehemi, Ahmad Irfan, Samir Bondock An unexpected reactivity during periodate oxidation of chitosan and the affinity of its 2, 3-di-aldehyde toward sulfa drugs // Carbohydrate Polymers. 2017. V. 175. https://doi.org/10.1016/j.carbpol.2017.08.027.
7. Gao C, Wang S, Liu B, Yao S, Dai Y, Zhou L, Qin C, Fatehi P. Sustainable Chitosan-Dialdehyde Cellulose Nanocrystal Film // Materials (Basel). 2021. V. 14(19). doi: 10.3390/ma14195851.
8. Tiina Nypelö, Barbara Berke, Stefan Spirk, Juho Antti Sirviö, Review: Periodate oxidation of wood polysaccharides-Modulation of hierarchies // Carbohydrate Polymers. 2021. V. 252. https://doi.org/10.1016/j.carbpol.2020.117105.
9. Carolina O. Pandeirada, Max Achterweust, Hans-Gerd Janssen, Yvonne Westphal, Henk A. Schols Periodate oxidation of plant polysaccharides provides polysaccharide-specific oligosaccharides // Carbohydrate Polymers. 2022. V. 291. https://doi.org/10.1016/j.carbpol.2022.119540.
10. Xia Sun, Feng Jiang Periodate oxidation-mediated nanocelluloses: Preparation, functionalization, structural design, and applications // Carbohydrate Polymers. 2024. V. 341. https://doi.org/10.1016/j.carbpol.2024.122305.
