
Section 4. Engineering sciences

38

Section 4. Engineering sciences

Anton Bukarev,
National Research University of Electronic Technology

Applicant, the Faculty of Informatics
and Software Computing Systems

A COMPREHENSIVE EXAMINATION OF SOFTWARE 
VERIFICATION METHODS: COMBINING 
STATIC AND DYNAMIC APPROACHES

Abstract: The domain of software design and development confronts 
substantial impediments in efficaciously addressing the verification 
process. This investigation endeavors to devise a classification 
framework for software verification methodologies, facilitating the 
scrutiny of extant techniques and their corresponding merits and 
demerits within software applications. By examining and categorizing 
these methodologies, this research aspires to generate an exhaustive 
set of criteria and proposals for further progress in automated testing 
execution on cloud-based apparatuses. The article delves into three 
salient categories of software verification methods: empirical, formal, 
and dynamic, and expounds on their disparate degrees of automation, 
extending from manual to entirely automated approaches. Through this 
comprehensive assessment, the study aims to augment the continual 
refinement and optimization of software verification techniques in a 
progressively cloud-oriented computing.

Keywords: software verification, automation, cloud-based devices, 
software testing.

1. Introduction
In the realm of software design and development, the verification 

process remains a critical challenge. Verification methodologies 
are devised to identify errors, susceptibilities, improperly executed 
attributes and specifications, as well as to ascertain the conformity 



39

A COMPREHENSIVE EXAMINATION OF SOFTWARE VERIFICATION METHODS...

of the final software product with the stipulated prerequisites. The 
development of a novel classification system for software verification 
methodologies is an imperative undertaking, as it enables the analysis 
of extant techniques and their software applications, in addition to 
discerning their merits and demerits. Investigating and categorizing 
these methodologies facilitates the formulation of a set of criteria 
and suggestions for subsequent exploration and enhancement of an 
automated testing execution approach on cloud-based devices.

Software verification methodologies can be broadly classified into 
three distinct categories: empirical, formal, and dynamic. Furthermore, 
with respect to the degree of automation, verification techniques may 
be characterized as either manual or automated.

2. Software verification
A primary objective of software validation is to ensure that the 

implemented code adheres to the terms of reference and fulfills 
functional requirements. This is achieved through the utilization of 
expertise, which facilitates the assessment of documentation and code 
for compliance with established norms and design standards, as well as 
software verification, which may encompass symbolic program execution 
and model checking methodologies. Formal verification relies on the 
mathematical representation of the program and does not necessitate 
its tangible implementation.

Symbolic execution is a technique that enables the emulation of 
a program’s execution with symbolic input variable values. This is 
tantamount to executing the program on specific test values of input 
variables, yet it minimizes the requisite number of tests. The semantics 
of symbolic execution are delineated for a programming language in 
which data objects are symbolically represented and are defined by 
augmenting the language’s fundamental constructs for interaction with 
symbolic values.

3. Software verification methods
A paramount phase in software verification involves ensuring that 

the software aligns with the stated quality attributes, such as correctness 
(conformity of the system to its intended purpose), security, resilience 
against indeterminate environmental fluctuations, efficiency in terms 
of time and memory resource utilization, adaptability to environmental 
alterations, as well as portability and compatibility.

This article examines merely a fraction of the numerous software 
verification methodologies, specifically: symbolic execution, model 



Section 4. Engineering sciences

40

validation, and dynamic and static verification techniques, which are 
currently deemed to be the most efficacious. Investigating the algorithms 
and operational principles of these methodologies may serve as a foundation 
for enhancing software testing procedures in cloud-based solutions.

4. Classification of software verification methods
Software verification methodologies are classified according to 

diverse criteria, including the level of automation, functional aptness, 
precision, types of errors detected, efficiency, scope, execution duration, 
and the approach to attaining the outcome. During software verification, 
the primary considerations are system stability in the event of non-
deterministic environmental behavior and the effective utilization of 
time and memory resources.

Expertise stands as one of the most prevalent methods of software 
verification. This approach entails a software assessment conducted by 
a subject matter expert. The expert may either be the software product’s 
creator or an external individual (or group of individuals) invited to 
provide an impartial evaluation of the software product’s attributes.

Software expertise can be categorized as either general or specialized, 
with general expertise further subdivided into distinct types: technical 
expertise, end-to-end control, inspection, and audit. Technical expertise 
is directed toward verifying a software product’s conformity with its 
specifications and standards. End-to-end control entails the analysis 
and evaluation of a program through a sequential examination of artifact 
characteristics by a group of experts who identify potential errors and 
vulnerabilities. Inspection involves an analysis where the detection of 
errors and vulnerabilities adheres to a well-defined plan. Lastly, an audit 
constitutes an analysis of a program executed by individuals who are 
not members of the project team.

Specialized software expertise encompasses several types. 
Organizational expertise is targeted at supervising the project’s status 
by management personnel. Usability examination is conducted by the 
client and users to evaluate the developed software’s user-friendliness. 
Security expertise is performed by information security professionals 
to gauge the security level of the software under development. 
Architecture property analysis focuses on appraising and categorizing 
software interaction scenarios with users, in addition to scrutinizing the 
properties of the software architecture.

The software examination method, conducted by qualified experts, 
is non-automatable and facilitates the resolution of a broad array of 



41

A COMPREHENSIVE EXAMINATION OF SOFTWARE VERIFICATION METHODS...

tasks. It boasts high functional suitability and is applicable at any stage 
of project development. The accuracy of the examination hinges on the 
expertise of the specialists carrying it out and can detect up to 90% of 
errors and vulnerabilities. The completion time is contingent upon the 
software’s intricacy and the expert team’s experience. Conversely, formal 
verification methods rely on the scrutiny of the program’s mathematical 
model rather than its source code, examining the practicability of 
specification requirements within the program model.

Formal software verification methods can be classified into 
several types based on the approach employed: deductive analysis, 
model verification, consistency checking, and abstract interpretation. 
Contrary to expertise, formal methods are amenable to automation but 
necessitate skilled specialists for constructing mathematical program 
models. Nonetheless, formal methods exhibit high functional suitability 
and accuracy, provided an appropriate formal model is devised. These 
methods can identify diverse error classes, such as undefined program 
behavior, uninitialized variables, format string errors, standard library 
usage errors, and others.

Formal software verification methodologies exhibit certain 
constraints in addressing software verification challenges, as 
constructing a comprehensive and suitable mathematical model is 
not always feasible. Nevertheless, these methods can prove efficacious 
in industrial projects when applied to testable domains that can be 
incorporated into a formal model. A range of techniques are employed 
for constructing mathematical models, including the Kripke structure 
and temporal logic, alongside model-based approaches such as finite 
state machines and Petri nets.

A primary advantage of the model verification methodology is 
its capacity for automating the processes of verification and model 
construction. The development of a formal model enables the 
representation of program code as logical expressions and facilitates 
the examination of program properties articulated in the form of a 
specification. Nonetheless, it is crucial to acknowledge that devising the 
most comprehensive and appropriate mathematical model necessitates 
the expertise of highly qualified professionals.

5. Static software analysis
Static program analysis constitutes an evaluation performed 

without the actual execution of the program, typically conducted on 
the basis of source code. Static analysis enables the examination of all 



Section 4. Engineering sciences

42

potential program execution paths, identifying errors and potential 
vulnerabilities. This method is frequently employed in conjunction with 
specialized automated tools. Two prominent groups of static verification 
methods are widely used: deductive program analysis methods and 
model verification methods. Deductive analysis techniques are utilized 
to substantiate a program’s compliance with its specification, generally 
provided in the form of preconditions and postconditions. However, 
these tools are ill-suited for the analysis of large-scale programs, as 
they necessitate manual annotation of functions and loops within the 
program text. Model validation approaches involve the creation of a 
mathematical program model, typically employing a Kripke model, 
which is subsequently analyzed for adherence to established conditions 
and constraints.

In static verification, the program is scrutinized without actual 
execution, typically through parsing the program text and its internal 
representation. The generation of the internal representation transpires 
during the parsing process, preserving the program’s original structure. 
Subsequent to the analysis, a control flow graph is constructed, enabling 
the examination of all potential program execution paths. The accuracy 
of the analysis is contingent upon the quality of the tools employed and 
the capacity to analyze the program’s internal representation.

Moreover, static analysis can aid in pinpointing potential performance 
concerns, suboptimal resource utilization, flawed flow control, and 
specific security vulnerabilities, such as SQL injection and XSS attacks. 
Nevertheless, it is important to acknowledge that static analysis cannot 
ensure the total absence of errors within the program, as covering all 
conceivable execution paths may be unattainable. Furthermore, static 
analysis cannot supplant comprehensive program testing on real data, 
which can reveal errors associated with the program’s interaction with 
the external environment.

Undoubtedly, static analysis-based verification is most impactful 
during the software design phase, as it facilitates the early detection 
of numerous errors and defects, substantially mitigating project costs 
and risks. Concurrently, automated verification tools employing static 
analysis cannot entirely supplant expert assessment and dynamic 
program testing, given their inability to account for all potential 
program execution scenarios and real-time component interactions. 
Consequently, static analysis utilization should be supplemented with 
alternative verification methodologies to attain optimal results.



43

A COMPREHENSIVE EXAMINATION OF SOFTWARE VERIFICATION METHODS...

6. Dynamic software verification methods
Dynamic software verification methods encompass the analysis of a 

program during actual execution. In simulation modeling, the program 
itself is not executed; rather, a program that simulates it is employed. 
Program inputs can provoke nondeterministic behavior, facilitating 
the detection of vulnerabilities and bugs. Dynamic analysis comprises 
several types, including testing, monitoring, simulation testing, and 
profiling.

Monitoring is an approach wherein the software’s operation is 
observed, documented, and evaluated, with the capacity to procure 
data on program operation through instrumentation. Instrumentation 
can be executed in diverse manners, such as manual, compiler, 
binary-translation-based, runtime injection, or simulator monitoring. 
Monitoring techniques can be event-based or static. The most exhaustive 
method of dynamic analysis is testing.

Software testing methods fundamentally aim to identify 
nondeterministic, erroneous, or non-compliant program code behavior. 
Testing is typically conducted based on known, predefined scenarios, 
which involve monitoring and creating a controlled program execution 
environment. This permits experimentation with various test sets 
and documentation of the results obtained. The quality of testing is 
determined by explicitly defined testing objectives, comprehensive test 
coverage, and established criteria.

In contrast to static analysis, dynamic software verification 
methodologies are predicated on the actual program execution and 
can be automated. These methods facilitate the creation of a controlled 
environment for testing and monitoring, and identify various defects, 
encompassing temporal and quantitative software characteristics, such 
as execution time and resource usage. Dynamic analysis can uncover 
memory leaks, errors in multithreaded applications, and other faults 
that solely transpire during actual program execution. Nevertheless, the 
efficacy of dynamic verification approaches is directly contingent upon 
the quality and volume of input data. Dynamic verification techniques 
are typically employed in domains where response time, resource 
consumption, and reliability are paramount, including database servers 
and real-time systems.

7. Conclusion
Upon analyzing the classification of software verification methods, it 

can be inferred that examination methods, while unable to be automated, 



Section 4. Engineering sciences

44

enable the detection of numerous errors. Conversely, formal verification 
methods, albeit more time-consuming, possess the capacity to identify a 
vast array of errors and are readily automated. However, static methods 
no longer ensure comprehensive testing due to the employment of 
dynamically generated code, which is impervious to static method 
verification. Dynamic methods can only detect a specific set of errors, 
which precludes the guarantee of exhaustive testing.

Consequently, to effectuate efficient software testing, it is prudent to 
employ various verification techniques at distinct project stages. When 
utilizing static methods, it should be acknowledged that enhancing 
analysis accuracy results in heightened resource consumption. To 
improve static analysis accuracy, dependencies between variables in the 
program code can be identified. During the initial development stages, 
it is advisable to apply dynamic methods only if functional software 
components exist. Their implementation necessitates the establishment 
of a test or monitoring system to regulate program behavior. Generally, 
dynamic methods are more efficacious and contemporary, as they can 
detect a greater number of vulnerabilities.

The findings of this study will contribute to the development of a 
system for automating test launches on cloud devices.

References
1.	 Schütte J., Fedler R., Tetze D. ConDroid: targeted dynamic analysis 

of Android Applications. AINA’15 Proceedings of IEEE 26th 
international Conference on Advanced Information Networking and 
Applications, Gwangui, South Korea, March 24-27, 2015.

2.	 Kim T., Park J., Kulinda I., Jang Y. Concolic Testing Framework for 
Industrial Embedded Software. APSEC’14 Proceedings of the 2014 
21st Asia-Pacific Software Engineering Conference, volume 2, Jeju, 
South Korea, December 01-04, 2014, pp. 7-10.

3.	 Gerasimov A.Y., Kruglov L.V., Ermakov M.K., Vartanov S.P. An 
approach of reachability confirmation for static analysis defects 
with help of dynamic symbolic execution. Trudy ISP RAN/Proc. ISP 
RAS, vol. 29, issue 5, 2017. pp. 111-134 (in Russian). DOI: 10.15514/
ISPRAS-2017-29(5)-7.

4.	 Miller, C., Valasek, C.: A survey of remote automotive attack surfaces. 
Black Hat USA (2014).

5.	 Huuck, R.: Technology transfer: Formal analysis, engineering, and 
business value. Sci. Comput. Program. 103 (2015) 3–12.



45

A COMPREHENSIVE EXAMINATION OF SOFTWARE VERIFICATION METHODS...

6.	 Mateo Tudela, F.; Bermejo Higuera, J.-R.; Bermejo Higuera, J.; Sicilia 
Montalvo, J.-A.; Argyros, M.I. On Combining Static, Dynamic and 
Interactive Analysis Security Testing Tools to Improve OWASP Top 
Ten Security Vulnerability Detection in Web Applications. Appl. Sci. 
2020, 10, 9119.

7.	 Barabanov, A.; Markov, A.; Tsirlov, V. Statistics of software 
vulnerability detection in certification testing. In International 
Conference Information Technologies in Business and Industry 
2018; IOP Publishing: Tomsk, Russia, 2017.

8.	 Bermejo, J.R.; Bermejo, J.; Sicilia, J.A.; Cubo, J.; Nombela, J.J. 
Benchmarking Approach to Compare Web Applications Static 
Analysis Tools Detecting OWASP Top Ten Security Vulnerabilities. 
Comput. Mater. Contin. 2020, 64, 1555–1577.

9.	 Nunes, P.; Medeiros, I.; Fonseca, J.C.; Neves, N.; Correia, M.; Vieira, 
M. Benchmarking Static Analysis Tools for Web Security. IEEE Trans. 
Reliab. 2018, 67, 1159–1175.

10.	Mohino, J.D.V.; Higuera, J.B.; Higuera, J.-R.B.; Montalvo, J.A.S.; 
Higuera, B.; Mohino, D.V.; Montalvo, J.A.S. The Application of a 
New Secure Software Development Life Cycle (S-SDLC) with Agile 
Methodologies. Electronics 2019, 8, 1218.

11.	Al-Amin, S.; Ajmeri, N.; Du, H.; Berglund, E.Z.; Singh, M.P. Toward 
effective adoption of secure software development practices. Simul. 
Model. Pr. Theory 2018, 85, 33–46.


