
Section 8. Engineering sciences in general

46

Section 8. Engineering sciences in general
https://doi.org/10.29013/ESR-23-3.4-46-49

Bukarev Anton,
National Research University of Electronic Technology, Russia

KEY FEATURES IN THE ANDROID SOFTWARE TESTING PROCESS
Abstract. This article examines the challenges and complexities of testing native Android appli-

cations, focusing on their interaction with the operating system (OS) and other apps. It highlights 
critical error reproduction and emphasizes the importance of a meticulous approach to ensure a 
seamless user experience. The article also provides valuable insights and recommendations for app 
developers and testers to address these challenges and create high-quality, user-friendly applications.

Keywords: Android applications, testing challenges, Android testing specifics.
1. Introduction
In recent years, the Android platform has become 

the predominant operating system in the mobile mar-
ket, with research from analytical agency Statista in 
2022 indicating a 71% market share [1]. As a result, 
numerous companies are increasingly focusing on this 
platform to expand their user base. The open-source na-
ture of Android has significantly contributed to its mar-
ket dominance; however, the variety of devices presents 
challenges in device support and software compatibil-
ity. Manufacturers often refrain from updating older 
devices to the latest operating system version due to 
economic considerations, encouraging users to acquire 
new devices with updated specifications. Software de-
velopers, in turn, prioritize application development 
for leading market devices. These factors, alongside 
programming errors, can lead to decreased demand for 
specific services and a decline in user experience. Con-
sequently, comprehensive testing of software released 
to a wide user base is of paramount importance [2].

2. Features associated with hardware in the 
testing process

The Android platform, as an open-source and 
cost-free system, has played a crucial role in garner-

ing its substantial market share. Nevertheless, the 
market encompasses a diverse array of devices, from 
flagship to lower-tier models. Furthermore, ongo-
ing advancements in electronics and manufacturing 
technologies prompt annual updates in smartphone 
lineups from various manufacturers, including Sam-
sung and Huawei. These factors contribute to con-
siderable market segmentation, despite the existence 
of a single operating system, thereby presenting ad-
ditional challenges when testing native Android ap-
plications compared to their iOS counterparts [3]. 
It is imperative to consider the device’s hardware 
characteristics during the testing process, such as:

RAM
Insufficient random-access memory (RAM) can 

markedly affect an application’s speed and perfor-
mance. Moreover, fully utilized RAM may result in 
instability and disruptions in the application’s func-
tionality. It is vital to consider this aspect during the 
testing process by examining the application’s perfor-
mance under conditions where memory is allocated to 
other applications. Under such circumstances, besides 
application crashes, functional issues might emerge, 
including errors, absent user interface elements, and 



KEY FEATURES IN THE ANDROID SOFTWARE TESTING PROCESS

47

the suspension of background services within the ap-
plication, among other potential complications.

Storage size
This parameter is notably specialized, as a consid-

erable amount of internal memory is predominantly 
needed for gaming and media applications. Never-
theless, in situations like streaming audio playback 
under conditions of inadequate internal memory, 
the playback will understandably stop. If the appli-
cation’s source code does not accommodate such a 
scenario, a critical error may transpire. As a result, 
it is recommended to incorporate this scenario into 
the test plan and conduct testing with memory pre-
populated with arbitrary data [4].

Network speed
In instances where the application’s source code 

incorporates a request timeout, the application 
might not await the arrival of incoming information, 
and with exceedingly slow connection speeds, inter-
face elements may not load within the designated 
time. This can result in unforeseeable consequences 
such as application termination or compromised us-
ability due to the absence of some or all interface 
elements. The connection type predominantly influ-
ences application functionality involving user data 
loading. Certain applications enable users to dis-
able data downloading or background updates via 
mobile networks, necessitating verification during 
the testing process, as it can potentially impact user 
expenses and, ultimately, user satisfaction with the 
application’s performance.

Display size
Screen size constitutes a critical parameter for any 

application, influencing the dimensions and place-
ment of user interface elements. Consequently, it is 
vital to accord particular attention to devices with 
minimum and maximum screen dimensions. On de-
vices with minimal screen parameters, interface ele-
ments may overlap, rendering them inoperable. Con-
versely, on larger screens and resolutions, elements 
may be diminutive to the extent that users struggle 
to interact with them accurately using their fingers. 

Hence, during the software quality assurance pro-
cess, these parameters ought to be considered, and 
dynamic sizing of elements should be implemented 
to adapt to varying screen sizes and resolutions [5].

Additional sensors
In smartphones, the accelerometer plays a vital 

role by measuring free-fall acceleration across three 
axes and determining the device’s spatial orientation 
from these measurements. This sensor enables the 
transition of the interface between portrait and land-
scape orientations when the device is rotated. While 
the accelerometer should be taken into account dur-
ing testing if the application accommodates both 
interface orientations, its importance is secondary 
to the processes involved in altering orientation and 
rotating the interface, which will be addressed later.

Various sensors, including proximity, ambient 
light, heart rate, gyroscope, barometer, and ther-
mometer, are integrated into modern smartphones 
to serve specific application needs. The primary test-
ing of these sensors should occur at the manufactur-
ing facilities where the sensors are produced.

3. Testing and error documentation rely on 
device management tools

Numerous actions can be recognized as common 
in the routine usage of a smartphone, which users 
frequently execute:

App minimization
In instances where the application is designed to 

operate in the background, minimization often pres-
ents a typical scenario for errors to transpire. Upon 
being minimized, the app may either stop function-
ing or exhibit improper behavior.

App termination
Though infrequent, errors may arise when an ap-

plication persists in functioning even after termina-
tion, exemplified by the ongoing audio playback in 
a closed player.

Orientation change
A common error includes the displacement of 

UI elements or instances where elements extend 
beyond the boundaries of the display.



Section 8. Engineering sciences in general

48

In each of the aforementioned scenarios, if an er-
ror is identified in a particular area and can be con-
sistently replicated, the error documentation within 
the bug tracker must encompass the conditions in 
which the error transpired, along with the conven-
tional steps for reproduction [6].

4. App interaction with OS and others: Criti-
cal error reproduction

An examination of the interaction between a test 
application, the operating system, and other applica-
tions can be conducted through the example of an 
audio player that utilizes the standard audio service 
of the Android platform.

Interaction between players
Two cases can be identified in the interaction of 

audio players: when players utilize the same audio 
service, and when a third-party application employs 
its own service. In the first scenario, it is essential for 
the application to inform the operating system that 
it has initiated audio playback. Consequently, when 
a second audio player is activated while the first one 
is playing, the initial player ceases audio playback, 
pauses, and cedes focus to the second player starting 
playback. However, if the application fails to convey 
this information, both players may play audio si-
multaneously, leading to a prevalent error. In some 
instances, this error emerges due to a third-party ap-
plication, in which case notifying its developers of 
the issue would be appropriate [7].

Default applications
Among standard Android applications utilizing 

the audio service, the “Phone” app serves as a prime 
example. The main interaction between the phone 
and audio player involves shifting focus between a 
call and audio playback. When the phone applica-
tion notifies the operating system of an incoming 
call, the audio-playing application must relinquish 
focus to the phone for ringtone playback and pause 
its own audio. Once the phone application commu-
nicates that the call has concluded, the audio applica-

tion regains focus and resumes playback from where 
the focus was transferred to the phone. Given that 
the phone application is error-free, any related errors 
reside solely within the tested application.

Interaction with application notifications
When the tested application incorporates a noti-

fication feature, proper configuration of the notifica-
tion operation is essential. If a notification includes 
interactive functions, such as managing audio play-
back without launching the application, scenarios 
may arise where the interactive controls fail to func-
tion or the application does not open in full screen 
upon clicking the notification.

Interaction with third-party application notifications
In cases where a third-party application notifica-

tion is received while the tested application is playing 
audio, the optimal solution involves muting the au-
dio without pausing playback or momentarily trans-
ferring focus to the notification, pausing and then 
resuming playback. Nonetheless, situations may 
arise where the application relinquishes focus to the 
notification but fails to regain it, resulting in paused 
playback, which could be inconvenient for the user.

5. Conclusion
The testing of native Android applications is a 

laborious and resource-intensive endeavor due to 
significant market segmentation, necessitating a 
scrupulous approach to testing. However, by pin-
pointing specific functionalities where errors arise 
and employing auxiliary tools for data collection, 
application development and testing become com-
paratively manageable, enabling the creation of truly 
outstanding applications that delight users. Mobile 
software development does not require build servers 
for application assembly, as seen in web application 
development, which reduces the intermediaries be-
tween programmers and users while mitigating po-
tential (and frequent) build errors. As a result, code 
errors transform into situations amenable to timely 
discussion and resolution.



KEY FEATURES IN THE ANDROID SOFTWARE TESTING PROCESS

49

References:

1.	 URL: https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-
systems-since‑2009/ Access on 2023.

2.	 URL: https://developer.android.com/training/testing/fundamentals/ Access on 2023.
3.	 Gao J., Bai X., Tsai W. and Uehara T. “Mobile Application Testing” IE.
4.	 Pavithra L. and Sandhya S. “Survey on Software Testing”. Journal of Network Communications and 

Emerging Technologies ( JNCET). – Vol. 9. – Issue 3. March, 2019.
5.	 Zein S., Salleh N., Grundy J. A systematic mapping study of mobile application testing techniques. Journal 

of Systems and Software. 2016
6.	 Mohd. Ehmer Khan & Farmeena Khan. Importance of Software Testing in software Development Life 

Cycle, International Journal of Computer science Issues, – Vol. 11. – No. 2. March, 2014.
7.	 Shalini Gautam and Bharti Nagpal. “Descriptive Study of Software Testing & Testing Tools”. Interna-

tional Journal of Innovative Research in Computer and Communication Engineering (IJIRCCE). –  
Vol. 4. – Issue 6. June, 2016.


