
Section 7. Technical sciences

114

https://doi.org/10.29013/EJTNS‑22-6-114-118

Jafarov N. D.,
Azerbaijan Technical University,

Baku, Azerbaijan

ANALYSIS OF COATING FROM POROUS MATERIAL 
UNDER TEMPERATURE INFLUENCE

Abstract. The paper deals with porous material hard base coating subjected to temperature and 
force effects. The limit displacement of the loaded surface is determined. The limit values of the 
problem parameters under which the displacement exists, are found.
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Introduction
Coatings are widely used for hardening machine 

parts, for increasing the durability of the structure, 
for similar technological processes in modern engi-
neering. Analysis of these coatings allows the tech-
nological processes to be made more effective, and 
this indicates the need for their implementation. 
Complexity of analysis are determined by many 
factors: complexity of bounding surface contact-
ing with coating, variety of coating material and 
effects on it, etc. All of the above listed, not only 
complicates the analysis, but in some cases leads to 
the need to consider new equations. An example of 
a new approach is accounting of porosity of coating 
material. Accounting of this factor is complicated 
if in the operation process of the machine parts 
with coating the porosity parameter changes. One 
of the factors leading to change of the considered 
parameter is joint temperature and force effect on 
the construction. To study this change we ignore 
the elasticity of the part, i. e. we consider only the 
hard base. Furthermore, we consider the simplest 
form of the bounding surface, i. e. the plane.

We consider a coating of thickness Н on the 
hard base and under longitudinal load of inten-

sity Р uniformly distributed on the surface. As-
sume that on the loaded surface we are given tem-
perature T1 , on the base-contacting surface the 
temperature T0 . Determine the displacement of 
the loaded surface caused by the applied force and 
temperature. The solution of this problem is 
known if the material coating is “entire”. However, 
the applied coating can have voids (pores). These 
pores are formed in the following stages: in the 
manufacture of the material and when applying it 
on the base. Their volume depends on tempera-
ture under which these processes are implement-
ed. Without analyzing the causes of occurrence 
of pores, we suppose that they exist in the coating. 
We denote relative volume of these pores by the 
parameter ω  [1]. The existence of pores influ-
ences on the kind of determining equations. In 
fact, availability of pores leads to rupture of solu-
tions, since the medium’s continuity is destroyed. 
An example of this type rupture is the heat equa-
tion. In the body we draw a straight line. For an 
entire body (without pores) temperature changes 
continuously. Suppose that this line passes 
through the pore to the body. Then we obtain that 
along this line the temperature is inhomogeneous, 
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and in the segment of the line passing through the 
pore, the heat conductivity coefficient changes. 
This change of heat conductivity coefficient leads 
to the rupture of the solution of heat equation. 
The type of rupture depends on the statement of 
heat conductivity problem.

We consider quasistatic distribution of tem-
perature on the coating when the material is en-
tire. In this condition, we take into account only 
longitudinal distribution and have:

d T
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where х is a longitudinal coordinate, х = Н is a 
coordinate of the stress surface, х = 0 is a coordi-
nate of the contacting surface. Suppose that the 
coating material is porous. Then the heatconduc-
tivity equation is of the form [2]:
d
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To determine the quantity ω  we consider the 
equation of its change. The relative volume of 
pores changes due to the change of relative volume 
in the body [3], i. e. ω ω= +0

du
dx

, where � �ω0  is the 
initial value of the parameter ω  and corresponds 
to the unloaded coating, du

dx
 is the change of the 

relative volume of the body under deformation, 
и  is longitudinal displacement of the coating 
points. For the problem under consideration the 
quantity du

dx
 depends on temperature and value of 

the applied load Р. Suppose that the change of the 
body’s relative volume is the sum of the change of 

the body’s relative volume caused by thermal ex-
pansion and change of the body’s relative volume 
caused by the applied load р. Let temperature 
change be linear, i. e. аТ, where α  is the coefficient 
of volumetric thermal expansion. The change of 
relative volume of the body caused by the applied 
load is determined from the physical relationship 
between strain and stress. There are two types of 
stresses for porous materials: the force referred to 
the selected surface and the force referred to the 
selected surface with regard to pores. Note that 
physical relationships are written for the second 
type of stress, in the present case for P � �1

1−( )−ω .  
Allowing for above assumptions, we have: 
ω ω
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aT ,  where f  is a function de-

scribing physical state. Allowing for relation (2), 
we represent the equation for determining ω  in 
the form:
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The obtained equation is integral. The coeffi-
cient of this equation depends on the value of the 
desired quantity. When writing equation (3) it was 
supposed that temperature effect and force applica-
tion is simultaneous. Suppose that at first tempera-
ture was applied. Then instead of (3) we have:
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We differentiate the given equation with re-
spect to x . Then instead of an integral equation 
we obtain a differential equation of the form:
d
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for х = 0.
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We represent the solution of this equation in 
the form:

1
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We determine the coefficient for T T1 0− . 
Based on the kind of this coefficient and expres-
sion for z −1,  we have:

0 0
0
2

1 0
0

1
1
2

2
H H Hdx

z
z xa T T

dx
z

dx∫ ∫ ∫= − −( )






















=
−

dx
a T T

dx
z

z Ha T T
dx
z

H H

= −
−( )

− −( )




















∫ ∫

−
1

2
2 2

1 0 0
0
2

1 0
0

1
1
22

0−

















z .

After transformations, instead of the obtained 
equality we get:
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Squaring both sides of the equation, we ob-
tain:
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This expression allows to express the quan-
tity ω  through the problem parameters. Taking 
into account the expression for z , we obtain:
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Note that the obtained expression does not 
make sense for all values of problem parameter. 
Restrictions on the value of the parameters are 
found from the coating failure conditions. Based 
on physical sense of relative volume of pores, the 
failure condition has the form: ω =1 . From 
equality (5) we obtain restrictions on the values 
of parameters in the form:
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where х is the coordinate of failure initiation. For 
the fixed value of T0  we get restriction on the 
value of the quantity T1 . We write this restriction 
in the following form:
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As the failure makes sense for the least value 
of temperature, we get that failure occurs for 
x H= . Then we have:

T T T
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Hence we find that the value of temperature 
T1  on the external surface x H= � in which failure 

occurs, equals: T
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We determine displacement of external sur-
face points. From the equation of change of the 
parameter ω  it follows:
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From the condition of contact of the coating 
with rigid base we have� � � �u = 0 for x = 0.  Then, af-
ter integrating (6) with respect to х and allowing 
for the boundary condition, we get:
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Hence we get that relative displacement of 
displacement of the points of the external surface 
ST  caused by temperature is determined by the 
following expression:

S
H

u H

a T T z
a

T T

T = ( ) = − + −

− −( ) − −( )















 ×
−

1
1

2

0

1 0 0 1 0

1

ω

× − −( ) − −( )















 −













1
3

2
20

2
1 0 0 1 0

3
2

0
3z a T T z

a
T T z� � �


.

Determine the limit value of the quantity ST . 
It corresponds to T
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Note that temperature distribution of the 
coating in the transverse direction depends on 
the parameter ω.  For entire and porous materials 
we have:
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In the first case the distribution is linear, in 
the second case, parabolic. As a result of tem-
perature effect the relative volume of pores 
changes and takes the value ω ω= ,  that corre-
sponds to the given temperatures T0 , T1 � and 
other problem parameters. Assume that after 
this, the coating is subjected to compression by 
pressure Р. Having accepted Hook’s linear law for 
describing physical state f
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on equation (3), we obtain:

ω ω
ω

ω
τ
ω
τ= −

−
= −

−
=

1
1 1E

p p
E

; ,�

where Е is Young’s modulus, ω = − − −( ) − −( )













1 2
2

0
2

1 0 0 1 0

1
2

z
x
H

a T T z
a

T T .

ω = − − −( ) − −( )













1 2
2

0
2

1 0 0 1 0

1
2

z
x
H

a T T z
a

T T .

Hence we find ω ω ω τ= + − −( ) +
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The sign in front of the root was chosen based 
on physical meaning of ω . In this case, the rela-
tive volume of strain is determined by the follow-
ing equation:

du
dx

=
−

= − + −( ) +



 =

= − −( ) + − +





−τ
ω

τ ω ω τ

ω τ ω

1
2 1 1 4

1
2

1 4 1

2
1

2 .

The value of displacement is determined by 
the following integral:
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Hence we get that the relative displacement 
of the external surface points, caused by the load, 
is determined by the following expression:
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The obtained expressions make sense not for 
all values of the load. Under compression, the 
restrictions on the parameters values are found 
from the conditions for closing pores [4]. Based 
on physical meaning of the relative volume of 
pores, the condition for closing the pores is of the 
form: ω = 0 . From the determining equation we 
get restrictions in the form: τ ω= .
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We determine the limit value of Sp . It equals
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Assume that at first the load is applied. Then 
the determining equation is of the form:

ω ω
τ
ω
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du
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u; � � �  for x = 0.

We take the solution of this system of equa-
tions in the following form:
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Assume that after applying the load the coat-
ing is subjected to temperature effect. Then the 
determining equation has the form:
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The solution of this system is determined by 
the expression when replacing ω0  by ω0 . Assume 
that as it was shown above, in this case it is neces-
sary to solve equation (3). However, we can sim-
plify finding of displacement assuming that dis-
placement is the sum of displacement caused by 
temperature and displacement caused by load-
ing. From the ones mentioned above we can con-
clude that displacement of a loaded surface of 
coating made of porous material, under the tem-
perature and force effects, depends on the load-
ing sequence. Furthermore, there exist limit val-
ues of problem parameters under which the 
found displacement has physical meaning.
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