

DOI:10.29013/EJTNS-25-6-85-90

TRANSFORMING AUTOMOTIVE QUALITY: A PRACTICAL GUIDE TO INTEGRATING ARTIFICIAL INTELLIGENCE

Kodirov Doniyor¹, Ahmedov Barot²

¹ Uzbek Institute of Standards Tashkent, Republic of Uzbekistan

² Cadaster Agency under the Ministry of Economy and Finance of the
Republic of Uzbekistan Tashkent, Republic of Uzbekistan

Cite: Kodirov D., Ahmedov B. (2025). *Transforming Automotive Quality: A Practical Guide to Integrating Artificial Intelligence*. *European Journal of Technical and Natural Sciences* 2025, No 6. <https://doi.org/10.29013/EJTNS-25-6-85-90>

Abstract

This article presents a practical blueprint for integrating Artificial Intelligence (AI) into the automotive Quality Management System (QMS). While traditional quality methods like IATF 16949 are foundational, their reliance on human inspection and sampling struggles with the complexity and pace of modern manufacturing. The authors propose a transformative approach where AI acts as a force multiplier, shifting the QMS from a reactive record-keeper to a predictive, self-optimizing system. The guide details a clear pathway, beginning with the critical step of mapping quality control points into measurable data across key production stages – Body Shop, Paint Shop, Assembly Line, and End-of-Line testing. It then outlines the technical infrastructure required, including data acquisition sensors, VIN-based traceability to create a “digital twin” for each vehicle, and the application of specific AI models like Computer Vision and Machine Learning for real-time inspection and prediction. The article emphasizes closing the feedback loop through automated station gating and process correction. The result is a closed-loop system that delivers tangible business benefits: a dramatic reduction in defect escapes, boosted productivity through predictive maintenance, and accelerated root-cause analysis. The authors conclude that integrating AI into the QMS is a definitive competitive advantage, leading to a more resilient, efficient operation and a stronger brand through measurable improvements in quality and cost.

Keywords: *Automotive Quality, Artificial Intelligence, Computer Vision, Predictive Analytics, Quality Management System, IATF 16949, VIN Traceability, End-of-Line Testing, Predictive Maintenance, Zero Defects*

1. Introduction: The New Imperative for Quality in Automotive Manufacturing

Imagine the modern automotive assembly line: a symphony of robotics, human ex-

pertise, and complex logistics, all working in concert to build thousands of unique vehicles. Each car is a marvel of engineering, comprising thousands of parts sourced from a global network of suppliers. Against this

backdrop of immense complexity, manufacturers face an unrelenting pressure to accelerate production cycles while delivering cars that are flawless from their very first mile.

The traditional approach to quality management, built on rigorous standards like IATF 16949, has served the industry well. It relies on systematic methods like Failure Modes and Effects Analysis (FMEA) to anticipate problems, the Production Part Approval Process (PPAP) to validate components, and Statistical Process Control (SPC) to monitor production. However, a significant portion of the final quality check often depends on human inspection and random sampling. In an era of compressed cycle times and high product variability, this reactive model can struggle. Subtle defects can escape the line, only to be discovered by a customer, leading to costly warranty claims and brand damage.

This is where Artificial Intelligence (AI) enters the picture, not as a replacement for these established practices, but as a powerful force multiplier. AI can transform a Quality Management System (QMS) from a reactive record-keeper into a predictive, self-optimizing nervous system for the entire plant. It continuously monitors a vast array of data, identifies subtle patterns invisible to the human eye, and intervenes before a defect is ever produced. This article presents a comprehensive, practical blueprint for integrating AI into the automotive QMS. We will move beyond theoretical concepts to outline a clear plan – from the specific control points on the factory floor to the data architecture and AI models that bring intelligent quality to life, ultimately leading to tangible business benefits.

2. The Foundation: Mapping Quality to Measurable Data

You cannot manage what you cannot measure. The cornerstone of any effective QMS, AI-powered or not, is a precise and exhaustive catalogue of control points. This catalogue translates the abstract goal of "high quality" into concrete, measurable specifications. For an AI system, this catalogue becomes the feature set – the essential list of what it needs to learn and monitor. Let's take a detailed walk through the production line, from bare metal to a finished vehicle.

2.1 The Body Shop: The Bones of the Vehicle

Here, the vehicle's fundamental structure is created. AI-driven systems, primarily using high-resolution cameras and computer vision, can now perform superhuman levels of inspection.

- **Body Geometry and Panel Gaps:** Ensuring doors, hoods, and fenders align perfectly is critical for aesthetics, wind noise, and weather sealing. AI vision systems continuously measure gap widths and flushness, targeting, for example, 3.5 mm with a tolerance of just ± 0.5 mm. They can also detect diagonal skew and panel flatness deviations as small as 1.0 mm, ensuring the car's skeleton is perfectly formed.
- **Weld Integrity:** The strength of a vehicle depends on its welds. Beyond traditional random ultrasonic testing, AI can visually inspect every weld seam in real-time, analyzing the weld nugget's appearance to predict strength and consistency, aiming for a pass rate of 98% or higher.

2.2 The Paint Shop: The Skin and its Protection

The paint process is both an art and a science, involving precise chemical and thermal reactions. AI brings unparalleled consistency to this delicate stage.

- **Film Thickness and Uniformity:** Using sensors like gloss meters and ultrasonic thickness gauges, the system ensures the paint film is consistently applied, typically aiming for 110 microns across the entire body. Deviations can lead to premature corrosion or an uneven appearance.
- **Gloss and Color Perfection:** AI-powered cameras analyze the reflected light from the painted surface, measuring gloss units (GU) to ensure a deep, consistent shine, typically targeting 90 GU.
- **Defect Detection:** This is where computer vision truly shines. Models trained on thousands of images can instantly spot minute defects like dust inclusions, "orange-peel" texture, runs, or sags that might be missed by a human inspector in a fast-moving line.

2.3 The Assembly Line: Where the Car Comes to Life

This is the most complex area, involving the marriage of mechanical, electrical, and software components.

- **Torque Discipline:** Perhaps the most critical parameter in assembly. Every bolt, from a simple interior trim fastener to a critical suspension component, has a specific torque value. AI monitors data from smart torque tools, ensuring every single fastener is tightened correctly – for example, confirming an interior bolt is torqued to 8 N·m within a $\pm 10\%$ window. Patterns of deviation can predict tool failure or operator error.
- **Electrical System Validation:** As cars become “computers on wheels”, validating their electronic heart is paramount. AI systems can monitor the Controller Area Network (CAN bus), checking for proper resistance (around 60 ohms) and scanning for error codes from every Electronic Control Unit (ECU) before the car even leaves the line. It can also ensure that advanced systems like ADAS (Advanced Driver Assistance Systems) have their cameras and radars correctly calibrated.

2.4 End-of-Line (EOL) Testing: The Final Exam

Before a car is shipped, it undergoes a final battery of tests. AI correlates data from these tests to provide a holistic health certificate for each vehicle.

- **Dynamic Testing:** On a roller test rig or a short track, the system checks for vibrations, unusual noises, and overall drivability. Microphones can quantify cabin noise, targeting less than 68 dB at 100 km/h.
- **Leak-Tightness:** A “rain shower” test simulates a heavy downpour. AI, combined with moisture sensors and visual inspection, can pinpoint the exact location of any water ingress, a task that is notoriously difficult and time-consuming manually.
- **Final Diagnostics:** A full system scan ensures zero critical Diagnostic Trouble Codes (DTCs) are present, and all fluid levels are correct for shipping.

By defining these precise, numeric targets for every stage, we create a language that both humans and AI systems can understand and act upon.

3. The Nervous System: Building the AI and Data Pipeline

Having defined what to measure, the next step is building the infrastructure to collect, analyze, and act on this data. This is the technical backbone that makes intelligent quality possible.

3.1 Data Acquisition: The Senses of the Operation

The factory must be equipped with the right “senses” to feed the AI brain.

- **Vision Sensors:** High-resolution 2D and 3D cameras are strategically placed at body, paint, and assembly stations to capture images for geometric and cosmetic analysis.
- **Smart Tools:** Torque wrenches, screwdrivers, and other fastening tools are equipped with transducers that log every single torque value directly to a central database.
- **Process Sensors:** Temperature sensors in paint ovens, humidity sensors in the assembly area, and vibration sensors on robots provide constant feedback on the production environment.
- **Network Taps:** Direct connections to the vehicle’s CAN bus and diagnostic ports allow for real-time interrogation of the car’s electronic systems.

3.2 Integration and Traceability: The Memory

Every piece of data is meaningless without context. The most critical element here is the Vehicle Identification Number (VIN). Every measurement – every torque, every image, every diagnostic code – is time-stamped and permanently linked to a specific VIN. This creates a complete “digital twin” or life-history for each vehicle. If a problem is discovered two years later, engineers can trace back through this data fabric to see the exact conditions and components present at its birth.

3.3 The AI Brain: Intelligence in Action

With data flowing in, different forms of AI are applied to specific tasks:

- **Computer Vision (CV):** Using Convolutional Neural Networks (CNNs), this is the go-to technology for visual inspection. Models are trained on thousands of images of “good” and “bad” parts (e.g., perfect welds vs. faulty ones) until they can make accurate judgments in milliseconds.
- **Supervised Machine Learning (ML):** This is used for predictive tasks. For example, by analyzing the vibration spectrum of a robot arm over time, an ML model can learn the “signature” of a healthy bearing and alert maintenance teams days or weeks before it fails, predicting the failure before it causes quality issues or downtime.
- **Unsupervised Anomaly Detection:** This is used to find the “unknown unknowns.” By analyzing complex data streams, like the patterns of communication on a CAN bus, this AI can flag subtle, unusual behaviors that don’t match any known failure mode but could indicate a rare and emerging issue.

3.4 Decision-Making and Feedback: Closing the Loop

The ultimate goal is not just to find problems, but to solve them automatically.

- **Station Gating:** A vision system inspecting panel gaps can send an immediate “NOK” (Not Okay) signal, preventing a misaligned body from moving to the paint shop and saving costly rework later.
- **Process Correction:** If an AI model detects that paint thickness is consistently drifting low on a specific car model, it can automatically send a parameter adjustment to the painting robots to increase the flow, self-correcting the process in real-time.
- **Workflow Automation:** When a critical defect is found, the system doesn’t just log it. It can automatically launch a formal 8D problem-solving report in the QMS, assigning an owner and a due date, ensuring that root-cause analysis and corrective actions are triggered without delay.

4. The Payoff: Measurable Results and Tangible Benefits

Investing in an AI-powered QMS is not an academic exercise; it is a strategic business decision with a clear return on investment. The benefits manifest in several key areas:

- **A Dramatic Reduction in Defect Escapes:** This is the most significant benefit. By performing 100% automated inspection at critical gates, plants that have implemented robust computer vision systems report reductions in customer-found defects of 90% or more. This directly translates into lower warranty costs and higher customer satisfaction and brand loyalty.
- **Boosted Productivity and Uptime:** Unplanned downtime is the enemy of manufacturing. AI-driven predictive maintenance allows plants to shift from a “fix-it-when-it-breaks” model to a “fix-it-before-it-breaks” paradigm. By forecasting failures in assets like robots and CNC machines, maintenance can be scheduled during planned breaks, dramatically increasing Overall Equipment Effectiveness (OEE).
- **Faster and Deeper Root-Cause Analysis:** Traditionally, finding the root cause of a sporadic defect could take a team of engineers days of sifting through disconnected data logs. An AI correlation engine can do this in minutes. For example, if there’s a spike in paint defects, the AI can instantly cross-reference the affected VINs and pinpoint that the issue only occurs with a specific batch of primer from “Supplier A” when the oven temperature was in the lower 5 degrees of its tolerance window. This insight is often too complex for manual discovery.
- **Data-Driven Supplier Management:** The system can automatically generate a risk score for each supplier based on the real-time quality data from their components. This allows the Incoming Quality Control (IQC) team to intelligently adjust their sampling frequency, focusing more resources on higher-risk suppliers and streamlining the process for reliable partners.

5. The Human Element: Navigating the Transition

Technology is only half the battle. Successfully implementing an AI-QMS requires careful attention to people and processes.

- **Bridging the Skills Gap:** There is a growing need for engineers and quality professionals who are bilingual in both manufacturing and data science. Companies must invest in training and development to build this capability in-house. Furthermore, the AI systems must have explainable interfaces – they need to be able to show *why* they made a certain decision to build trust with line operators and engineers.
- **Strong Governance and Change Management:** An AI system cannot operate in a silo. It must be deeply embedded into the existing QMS governance. This means that every “NOK” from an AI model must follow the same disciplined CAPA (Corrective and Preventive Action) workflow as a defect found by a human. Model updates and changes must go through a formal change-control process. This ensures the system remains auditable and compliant with stringent automotive standards.
- **A Phased, Practical Approach:** The journey should not be a “big bang” transformation. The most successful strategies start with a focused pilot project on a high-impact, high-pain area. This could be automating the inspection of paint defects or predicting failures on a critical CNC machine. Starting small allows the team

to demonstrate quick wins, build confidence, and learn valuable lessons before scaling the solution across the entire plant.

6. Conclusion: The Future of Quality is Intelligent

The journey towards an AI-powered quality management system is a fundamental shift from reactive correction to proactive prevention. It begins not with algorithms, but with a rigorous, detailed catalogue of control points – the fundamental language of quality. By building a VIN-centric data fabric that captures the entire production history of every vehicle, and then layering in intelligent models for vision, prediction, and anomaly detection, manufacturers can create a closed-loop system that never sleeps.

This system ensures consistent, unbiased inspection at a scale and speed impossible for humans alone. It enables earlier interventions, stopping problems before they consume resources and create waste. Most importantly, it accelerates the pace of learning and improvement, turning the vast, heterogeneous data of the modern plant into a strategic asset.

The outcome is a more resilient, agile, and efficient manufacturing operation. The benefits are not theoretical; they are measurable in the hard metrics of business performance: a significant reduction in warranty claims, a lower cost of quality, higher equipment effectiveness, and a stronger, more trusted brand. In the highly competitive automotive industry, the integration of AI into the QMS is no longer a futuristic concept – it is a clear and present pathway to achieving and sustaining a definitive competitive advantage.

References

- Arena, S., Florian, E., & Zennaro, I. (2021). A Deep Learning-based system for quality control in the automotive industry. *Journal of Manufacturing Systems*, – 60. – P. 71–80.
- Dalzochio, J., et al. (2020). Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges. *Computers in Industry*, – 123. – 103298 p.
- Kang, Z., Catal, C., & Tekinerdogan, B. (2020). Machine learning applications in production lines: A systematic literature review. *Computers & Industrial Engineering*, – 149. – 106773 p.
- Lee, J., Davari, H., Singh, J., & Pandhare, V. (2018). Industrial Artificial Intelligence for industry 4.0-based manufacturing systems. *Manufacturing Letters*, – 18. – P. 20–23.
- Liang, Z., & Zhang, Y. (2021). Anomaly detection for in-vehicle networks using deep learning. *IEEE Transactions on Vehicular Technology*, – 70(5). – P. 4208–4219.

- Mourtzis, D., Vlachou, E., & Milas, N. (2016). Industrial Big Data as a result of IoT adoption in manufacturing. *Procedia CIRP*, – 55. – P. 290–295.
- Peres, R. S., Jia, X., Lee, J., Sun, K., Colombo, A. W., & Barata, J. (2020). Industrial Artificial Intelligence in Industry 4.0 – Systematic Review, Challenges and Outlook. *IEEE Access*, – 8. – P. 220121–220139.
- Tao, F., Zhang, M., & Nee, A. Y. C. (2019). *Digital Twin and Smart Manufacturing*. Elsevier.

submitted 25.10.2025;

accepted for publication 08.11.2025;

published 30.12.2025

© Kodirov D., Ahmedov B.

Contact: kodirovd@gmail.com