

DOI:10.29013/EJTNS-25-6-81-84

DIGITAL PROTOTYPE AND APPLIED INTEGRATION: METHODOLOGY FOR CREATING COMPLEX TECHNICAL SOLUTIONS

Karlen Varosian ¹

¹ Individual Entrepreneur and Office Space Design Specialist Moscow, Russia

Cite: Karlen V. (2025). *Digital Prototype and Applied Integration: Methodology for Creating Complex Technical Solutions*. European Journal of Technical and Natural Sciences 2025, No 6. <https://doi.org/10.29013/EJTNS-25-6-81-84>

Abstract

This paper presents a methodological approach to the development of complex technical solutions through digital modeling and applied integration. Using advanced design tools such as SolidWorks, inventors and engineers can simulate, analyze, and refine systems before building physical prototypes. The paper includes two detailed case studies: a vortex generator and a water purification system for hospitals. These examples demonstrate how digital validation can reduce development time, minimize cost, and improve innovation accuracy.

Keywords: *Digital prototyping; integrative technology; simulation; CAD; SolidWorks; vortex generator; hospital water treatment; Joule–Thomson effect; Rankine–Hilsch vortex; electrochemical processing*

Introduction

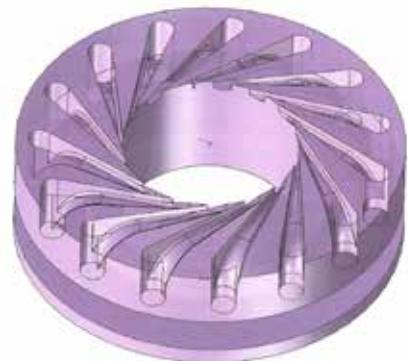
The landscape of engineering and technological development has changed dramatically in recent years. As systems become more intricate and multidisciplinary, the classical approach – where inventions were created within isolated domains such as mechanics, electronics, or programming – is no longer adequate. Today, market-relevant innovations are expected to combine multiple layers of complexity, including hardware design, logical architecture, embedded control, digital modeling, and even materials science. In this environment, the success of an invention increasingly depends not only on its conceptual novelty but also on the seamless integration of its components into a working whole. It is no longer sufficient to propose an idea in theory;

that idea must be demonstrably functional across all technical dimensions. Importantly, the ability to manufacture the proposed solution efficiently and economically plays a critical role in determining its real-world viability. This growing need for cross-disciplinary synergy has elevated the role of digital prototyping and simulation tools. Modern computer-aided design (CAD) systems allow inventors to move beyond static schematics and instead construct dynamic, interactive models. These models can include geometric design, material properties, stress behavior, fluid interactions, and programmable logic – effectively simulating the behavior of the final product before any physical prototype is built. Consequently, the innovation process has shifted toward a methodologically integrated work-

flow, where digital tools are used not just for visualization but for verification, iteration, and even automated manufacturing planning. Digital validation now serves as a critical stage in reducing development time, minimizing errors, and ensuring that multidisciplinary inventions function cohesively under real-world constraints. This article explores this new paradigm by presenting both the conceptual methodology and two applied case studies that illustrate how digital technologies empower engineers to design, validate, and prepare for the production of complex, integrative technical solutions. 2. Tools for Digital Validation

The use of CAD systems such as SolidWorks provides inventors with the ability to digitally simulate complex structures with high precision. These tools support animation, interaction modeling, geometric testing, and tolerance checking, all of which allow for the verification of functionality and novelty without the expense of building physical prototypes. Digital design also enables automated data export for CNC machining, ensuring that the digital model can be manufactured accurately. This workflow bridges the gap between conceptual design and physical production, especially for inventions that require precise geometric and functional coherence.

Case Study 1: Integration in Vortex Generator


One of the most illustrative examples of integrative design through digital prototyping is the development of a vortex generator – a device engineered to create controlled vortex flows within a confined structure using multiple gaseous media. This system embodies the convergence of several complex domains: computational fluid dynamics, advanced geometry, thermodynamic principles, and CNC manufacturing technologies. At the initial design stage, the concept required a high-precision internal geometry, capable of inducing spiral motion in compressed gas streams. Key architectural elements included:

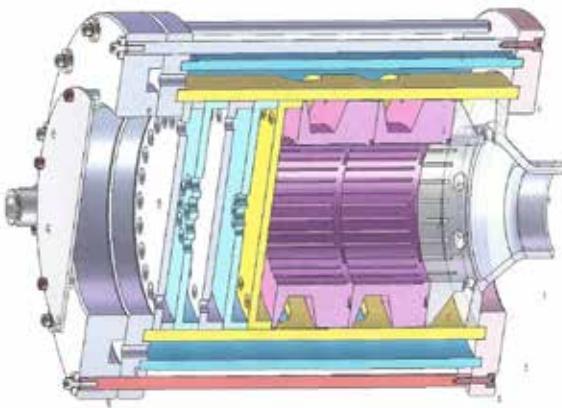
- Tangential inlet channels that initiate rotational flow;
- A central axial borehole, carefully dimensioned to stabilize the vortex axis;
- Internal flow chambers configured to maximize angular momentum and turbulence generation.

What distinguishes this generator is not just the complexity of its geometry, but the integration of physical phenomena within the digital model itself. The system was designed to harness two thermodynamic effects:

- The Joule–Thomson effect, which enables temperature reduction through gas expansion;
- The Rankine–Hilsch vortex effect, facilitating simultaneous heat separation and localized cooling.

The entire unit was digitally engineered using SolidWorks, enabling precise control over surface transitions, cavity volumes, and material thicknesses.

This software also allowed for:


- Tolerance analysis to ensure manufacturability;
- Motion simulation of gas flow through the internal spiral paths;
- Export of the CAD data directly to CNC machines without reformatting.

Based on the final validated model, two prototype components were manufactured – one from aluminum alloy and another from stainless steel – on high-precision CNC milling centers.

The seamless transition from digital simulation to physical production highlights

the reliability of the modeling environment, as well as the feasibility of producing geometrically complex parts with zero manual adjustment. This case demonstrates how aerodynamic optimization, material behavior, and digital design logic can be unified into a single, replicable process. By combining principles from thermodynamics, geometry, and manufacturing science, the vortex generator embodies a fully integrative technical solution – conceived, verified, and realized entirely within a digital-first workflow.

Case Study 2: Integrative Water Treatment Solutions for Hospitals

Medical institutions, particularly hospitals and clinics, place exceptionally high demands on water quality due to the need for sterility, chemical neutrality, and microbiological safety across a range of clinical applications. Contaminated or improperly treated water can compromise patient care, damage sensitive equipment, or disrupt laboratory processes. In response to these challenges, this case study presents the design and digital validation of an integrated electrochemical water purification system, engineered specifically for the medical environment.

Unlike conventional purification systems that rely on chemical reagents, the proposed solution utilizes electrochemical processing methods that are entirely reagent-free. The system is built around composite, water-permeable electrodes and chemically inert, non-metallic contact materials. This architecture enables safe and selective processing of water without introducing additional impurities or by-products into the treatment cycle.

System Architecture and Functional Modules

The treatment system is composed of multiple interrelated subsystems, each addressing a specific stage of water preparation and recovery:

- Tap Water Pre-Treatment:

The first stage addresses the incoming municipal water supply. The electrochemical unit adjusts the pH level, neutralizes biological agents such as bacteria and viruses, and selectively removes undesirable trace elements (e.g., boron, lithium, selenium, lead) even if they are within legal limits but unsuitable for medical use. The system is capable of raising the oxidation-reduction potential (ORP) to values exceeding 800 mV, enhancing the water's biological compatibility and reactivity in medical procedures.

- Hospital Waste Water Treatment:

Medical waste water often contains high concentrations of organic contaminants, pharmaceuticals, and biologically active substances. The system's second module employs aerodynamic flotation followed by electrochemical separation, which isolates suspended solids, pathogens, and dissolved organic matter without requiring chemical flocculants or coagulants.

- High-Density Electrochemical Disinfection:

To ensure complete deactivation of viruses, bacteria, and other pathogens, treated waste water undergoes high-intensity electro-disinfection. This stage features closely spaced electrodes (gap < 1 mm), high current densities, and optimized flow conditions that rapidly sterilize the fluid by inducing radical formation and local pH shifts.

- Post-Reverse Osmosis Conditioning:

Reverse osmosis (RO) units are commonly used in hospital water systems but often produce output water with a low pH, which can be corrosive to medical devices. The final stage of the system restores the treated water's pH to a neutral range via controlled electrochemical buffering, ensuring compatibility with high-value hospital instruments and internal water loops.

References

United States Patent Application US20180290403 A1. Hasan, Zeaid F. *et al.* *Unitized Composite Structure Manufacturing System.* – October 11, 2018.

United States Patent Application US20180285065 A1. Jeong, Gyuhyeok. *Smart Controlling Device and Method of Controlling Therefor.* – October 4, 2018.

United States Patent Application US20180293778 A1. Appu, Abhishek R. *et al.* *Smart Compression/Decompression Schemes for Efficiency and Superior Results.* – October 11, 2018.

United States Patent Application US20180285306 A1. Essmann, Roland *et al.* *Internet Protocol (IP)-Enabled Smart Transducer.* – October 4, 2018.

United States Patent Application US20180272023 A1. Bystrzynski, Richard Mariusz *et al.* *Smart Optic Controller for a Hydroxyl Generator Unit.* – September 27, 2018.

submitted 04.11.2025;
accepted for publication 18.11.2025;
published 30.12.2025
© Karlen V.
Contact: v.k.karlen@gmail.com