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Abstract

Effective therapies are needed to mitigate Alzheimer’s disease (AD), a neurodegenerative
dementia that harms cognitive function in over 10% of people older than 65. Although mono-
amine oxidase B (MAO-B) is a critical therapeutic target for AD, only three MAO-B inhibitors
(rasagiline, selegiline, and safinamide) are currently approved, and they are mainly used for
treating Parkinson’s Disease. To identify novel MAO-B inhibitors as treatments for AD, in sil-
ico drug discovery was employed as a cost-effective and efficient approach for screening a vast
chemical space. Geometric, energetic, and machine learning methods were used to evaluate
potential binding sites, which were subsequently assessed with molecular docking for 20 po-
tential MAO-B inhibitors identified from pharmacophore mapping. These 20 molecules were
then analyzed for their pharmacokinetic and toxicological properties via ADMET prediction,
and Z56776036 and Z1980993192 were selected as the two most promising drug candidates.
These lead compounds had high binding affinity (docking scores below —9 kcal/mol), strong
ADME profiles, and low toxicity (LD50 values above 1000 mg/kg). This experiment proposes
an innovative method of MAO-B inhibitor discovery. It represents a promising starting point
for future work focused on further testing of the 2 lead compounds through in vitro screening
and additional in silico discovery of lead compounds using the methodology of this project.
Keywords: Alzheimer’s disease, monoamine oxidase B, pharmacophore mapping, molecular
docking, ADMET prediction, drug discovery

Introduction
Alzheimer’s disease (AD), a type of neu-
rodegenerative dementia, impacts memo-
ry and cognitive abilities in over 57 million
people worldwide alongside other dementias

(The Lancet, 2022). It is estimated that 1 in
9 people over the age of 65 have Alzheimer’s,
and researchers predict that over 152 mil-
lion people worldwide will have dementia by
2050 (The Lancet, 2022; Alzheimer’s Associ-
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ation, 2024). Additionally, healthcare costs
for AD patients are projected to reach almost
$1 trillion in 2050 (Alzheimer’s Association,
2024). Therefore, treating AD remains a sig-
nificant concern both for public health and
economic stability.

Current FDA-approved drugs for AD
include acetylcholinesterase  inhibitors
(AChEIs), NMDA receptor antagonists, and
monoclonal antibodies targeting AP proteins
(Zhang et al., 2024). AChEIs, such as done-
pezil, galantamine, and rivastigmine, are the
main type of pharmacological treatment for
AD (Zuliani et al., 2024). Although they mild-
ly mitigate cognitive decline, AChEIs remain
mostly symptomatic (Zuliani et al., 2024).
Memantine, the only NMDA receptor antag-
onist currently approved for AD treatment,
is prescribed for patients with moderate to
severe AD (Balazs et al., 2021). Usually a sec-
ond-line treatment after AChEIs, memantine
has a small benefit in moderate to severe AD,
but not in mild AD (Bal4zs et al., 2021). Fi-
nally, newer drugs for AP proteins include
aducanumab, lecanemab, and donanemab
(Ebell et al., 2024). Cognitive benefits are
statistically significant but small, and risks
such as edema or hemorrhage remain prev-
alent with these drugs (Ebell et al., 2024).
As a result, many monoclonal antibodies for
AD have been discontinued due to their side
effects. Since current AD treatments have
many drawbacks, researchers have been ex-
ploring more promising pathways for AD to
develop new drugs.

Two main pathways for AD are the am-
yloid-B (APB) pathway and the neuroinflam-
mation pathway, which have gained more
attention in recent years over older pathways
such as the cholinergic hypothesis. The amy-
loidogenic pathway occurs when [-secretase
cleaves the amyloid precursor protein (APP)
instead of a-secretase, forming soluble APP-3
and a C-terminal fragment (CTFf) instead
of soluble APP-a (Hampel et al., 2021). As
a result, AP peptides are produced, and they
clump together in extracellular AB plaques
that cause aberrant signaling between neu-
rons (Hampel et al., 2021). Additionally, the
amyloidogenic pathway can lead to tau hyper-
phosphorylation, which causes neurofibril-
lary tangles that are correlated with cognitive
decline (Hampel et al., 2021). The neuroin-
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flammation pathway involves the activation
of microglia and astrocytes, which lead to in-
flammatory signaling with neurotoxic effects
(Liew et al., 2023). Positive feedback loops as
well as AP or tau buildup contribute to neu-
roinflammation, either through further glial
activation or increased AP accumulation via
RIPK1 kinase (Liew et al., 2023; Doig, 2018).

Monoamine oxidase B (MAO-B) can of-
fer insights into new AD treatment through
the AP and neuroinflammation pathways.
MAO-B is an enzyme that breaks down
monoamine neurotransmitters such as sero-
tonin, dopamine, and norepinephrine, which
regulate mood, cognition, and behavior (Behl
et al., 2021). MAO-B works by removing the
amino group of the neurotransmitter and
oxidizing it, producing an inactive metabo-
lite, an aldehyde (R-CHO), ammonia (NH3),
and hydrogen peroxide (H202) as a byprod-
uct (Behl et al., 2021). Normally, MAO-B
controls mood and motor activity, acting as
a metabolic barricade against amines. How-
ever, the overexpression of MAO-B enzymes
can lead to oxidative stress due to H202
buildup, causing AP plaques and neurofibril-
lary tangles (Behl et al., 2021). High levels of
MAO-B, which breaks down non-hydroxylat-
ed amines, are found in astrocytes surround-
ing AP plaques (Behl et al., 2021). The oxida-
tive stress caused by MAO-B overactivity may
lead to the AP and tau pathways by triggering
neuroinflammation, potentially causing A
plaques or neurofibrillary tangles.

Because MAO-B is linked to two key
pathways for Alzheimer’s disease, mono-
amine oxidase inhibitors (MAOIs), an early
class of antidepressants, are being explored
as a promising new form of AD treatment.
In Alzheimer’s disease, the glutamate-GABA
balance is disrupted, causing oxidative
stress, and MAOIs can restore that balance
by increasing GABA levels (Behl et al., 2021).
MAQOIs also sequester aldehydes and inhibit
primary amine oxidase (PrAO), an enzyme
that also produces aldehydes promoting A
plaque formation (Behl et al., 2021). These
mechanisms indicate that MAOIs may be
able to reduce oxidative stress in the brain,
making them a powerful candidate for early
AD treatment.

Researchers have explored various meth-
odsfordevelopingMAOI-based ADtreatment.
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Astudy by Da Costaetal. used in silico preclin-
ical screening to identify 4 lead compounds
as potential MAO-B inhibitors, although
these compounds have yet to undergo further
testing (2024). Additionally, some propargyl-
amines, such as selegiline and rasagiline, can
be used as irreversible MAO-B inhibitors by
binding covalently to the coenzyme flavin
adenine dinucleotide (FAD), permanently
disabling MAO-B (Chatzipieris et al., 2024).
Newer compounds with internal alkynes are
being explored as a way to avoid unwanted
side effects of irreversible inhibition, such as
upregulation of the GABA-synthesizing en-
zyme diamine oxidase (DAO) (Chatzipieris
et al., 2024). Park et al. developed KDS2010
in 2019, a MAO-B inhibitor that is both re-
versible and highly selective (2019). By
testing on APP/PS1 mice, the researchers
discovered that KDS2010 reduces astrocyt-
ic GABA levels, bypassing the challenges of
selegiline increasing DAO activity (Park et
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al., 2019). Beyond inhibitors for MAO-B
alone, studies have also developed poten-
tial AD treatments involving drugs aimed at
more than one target. Through in silico and
in vitro analysis, Svobodova et al. tested 24
N-methylpropargylamino-quinazoline deriv-
atives as multi-target directed ligands (MT-
DLs) for cholinesterases, monoamine oxi-
dases, and N-methyl-D-aspartate receptors
(NMDARSs) in AD (2023). However, MTDLs
face the challenge of selectivity, as they are
designed to inhibit more than one enzyme.
The potential of MAO-B inhibitors still re-
mains largely unexplored, and no MAO-B in-
hibitors have passed clinical trials as of 2025.
This research aims to improve upon existing
work for MAO-B inhibitor discovery and fo-
cus on systematic pharmacophore-based in
silico screening, which is cost-effective and
offers rapid results.
Methodology

Figure 1. Overview of methodology with 5 main steps

Step T Identifying Binding Sites

Step 2 Pharmacophore Mapping

\

Step 3 Molecular Docking

Step & Toxicity Screening

_ EIRIEIEY

Tty chasgificaticn e 3

MAO-B Binding Sites

To detect potential binding sites on the
MAO-B protein that are both geometrically
and energetically viable, computational tools
such as DoGSiteScorer, FTSite, and P2Rank
were used. DoGSiteScorer detects binding
pockets, identifies their geometric and phys-
icochemical properties, and predicts protein
druggability to assign a drug score using

a support vector machine (Volkamer et al.,
2012). MAO-B’s PDB code, 6FWC, was ap-
plied for DoGSiteScorer on https://proteins.
plus/ with default settings (Reis et al., 2018).
The “DoGSiteScorer” tab was selected on the
website, and all settings were left as default.
FTSite uses molecular probes to determine
energetically favorable binding sites, as loca-
tions where the probes bind are more likely
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to be optimal binding sites for ligands (Ngan
etal., 2011). Code 6FWC was used on FTSite
(https://ftsite.bu.edu/) with default settings.
P2Rank uses machine learning to classify
Solvent Accessible Surface points, which are
regularly spaced points that encode geomet-
ric and physicochemical properties (Krivak
& Hoksza, 2018). Code 6FWC was inputted
on P2Rank with default settings on Prank-
Web (https://prankweb.cz/) (Jendele et al.,
2019).

Pharmacophore Mapping

Pharmit (https://pharmit.csb.pitt.edu/)
was used to generate a pharmacophore
map and virtually screen small molecules
to match the map (Sunseri & Koes, 2016).
Pharmit filters through large drug databas-
es and ranks results via energy minimization
(Sunseri & Koes, 2016). To perform virtu-
al screening with pharmacophore mapping
in Pharmit, PDB code 6FWC was entered,
“FAD” was selected from the adjacent drop-
down menu, binding site waters were ig-
nored, and the Enamine database was used.
Pharmacophoric features of MAO-B were
selected in areas likely to be optimal binding
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sites, creating 3 maps that captured different
areas of the MAO-B enzyme (see Figure 8).
Pharmit scanned the Enamine database and
produced a list of molecules that matched the
pharmacophore maps, from which 20 mol-
ecules were selected that had the least root
mean square deviation.

Molecular Docking

After identifying the 20 top compounds
from the Enamine database, molecular dock-
ing with SwissDock was used to test the abil-
ity of these compounds to dock on MAO-B
(Grosdidier et al., 2011; Bugnon et al., 2024).
On swissdock.ch, docking with attractive
cavities was used with the SMILES code from
Enamine (enaminestore.com) as the ligand
and code 6FWC as the target. Chain B of the
MAO-B enzyme was selected, and none of the
heteroatoms were kept. Chain B was chosen
because FTSite detected more potential bind-
ing sites on Chain B than Chain A. The search
space was then defined with box center (204,
1284, 18A) and box size (154, 174, 274), as
shown in Figure 2. The process was repeated
for all 20 compounds.

Figure 2. Setup of the SwissDock molecular docking. The purple ribbon represents chain
B of the MAO-B protein, while the box represents the area where docking was simulated

ADME Screening
Based on theresults of the molecular dock-
ing, the top 10 drug candidates were chosen
by most negative SwissParam score. Swis-
sADME was used to determine various phys-
icochemical features for the 10 compounds,
as it identified their absorption, distribution,

metabolism, and excretion (ADME) capabil-
ities in the human body (Daina et al., 2017).
To perform screening with SwissADME, the
SMILES code obtained from the Enamine
database was entered at http://www.swis-
sadme.ch/. The molecular weight, number
of hydrogen bond acceptors, number of hy-
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drogen bond donors, and consensus LogP
value was used for each drug candidate to
determine whether the compound satisfied
Lipinski’s Rule of Five. Finally, the water
solubility (Insoluble < Poorly < Moderately
< Soluble < Very < Highly), gastrointestinal
(GI) absorption classification, and blood-
brain barrier (BBB) permeability were eval-
uated for each compound. For the screening,
the consensus LogP value was used instead
of the iLogP value, because the iLogP value
was often an outlier from the other calculated
LogP values. The ESOL Log S value was used
for water solubility. Through this analysis,
the number of drug candidates was narrowed
down from 10 to 7.

Toxicity Screening

After the ADME screening, toxicity
screening was performed on the 7 remaining
compounds using ProTox 3.0 (https://tox.
charite.de/protox3/). Tox Prediction was
selected and the SMILES from the Enamine
database was pasted in. All fields in the mod-
el prediction box were checked before start-
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ing the prediction. Only compounds that had
an LD50 value greater than 400 mg/kg and
a toxicity classification above 3 were kept,
which narrowed the number of compounds
down from 7 to 3. Then, examining the net-
work and toxicity radar charts determined
the final 2 safest potential candidates.

Results and Discussion

MAO-B Binding Sites

In order to determine potential drug
candidates, binding sites on the protein that
drugs could bond to were detected. A geo-
metric method (DoGSiteScorer), an energet-
ic method (FTSite), and a machine learning
method (P2Rank) were used to predict po-
tential binding sites on the MAO-B protein.
DoGSiteScorer, the geometric method, was
able to detect 38 potential binding sites. Table
1 shows all of the sites that had a drug score
> 0.5, of which there were 17. Two sites, P_0
and P_1, were noticeably larger than the oth-
ers, although a smaller site (P_5) was ranked
first by drug score.

Table 1. The top 17 binding sites detected by DoGSiteScorer
that had drug score > 0.5, sorted by drug score

Name Volume (A3) Surface Area (A2) Drug Score
P_5 411.14 396.08 0.87
P_0O 2077.85 1722.15 0.81
P_1 2042.91 1725.6 0.81
P 2 553.72 721.08 0.81
P_3 548.35 748.07 0.79
P_4 460.78 845.28 0.74
P_9 298.12 385.62 0.73
P_11 293.54 173.93 0.72
P_6 370.36 672.77 0.67
P_7 308.87 381.52 0.67
P_10 294.01 326.82 0.65
P_8 306.82 585.96 0.63
P_14 269.67 420.62 0.56
P_12 290.38 514.82 0.54
P_13 277.1 520.46 0.51
P_15 260.66 345.48 0.51
P_20 162.97 247.66 0.5
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As seen in Figures 3 and 4, P_0 (yellow) as P_5, which is much smaller but has the
and P_1 (purple) are much larger than the highest drug score assigned by DoGSiteScor-
other binding sites. Figure 3 shows the top 3  er. Figure 4 shows all 17 potential binding
binding sites, including P_0 and P_1 as well  sites.

Figure 3. Top 3 binding sites identified by DoGSiteScorer. The red and blue
ribbons represent the protein structure, while the green, yellow, and pur-
ple represent the binding sites (P_5, P_0, and P_1 respectively)

Figure 4. All 17 potential binding sites identified by DoGSite-
Scorer, shown on the protein from two different angles

The energetic method, FTSite, was ableto  the side colored red (see above). Since FTSite
detect 3 possible binding sites, as shown in  is based on energetic rather than geometric
Figure 5. Two sites were on the side colored  favorability, it identified less potential bind-
blue on DoGSiteScorer, and one site was on  ing sites.
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Figure 5. Results of the FTSite energetic binding site prediction for the
MAO-B protein. The gray ribbon represents the protein structure, while
the green, red, and purple represent potential binding sites.

Finally, the machine learning method, sites were consistent with DoGSiteScorer,
P2Rank, was able to detect 12 binding sites, as they were much larger than the rest. On
as shown in Table 2. Sites were ranked by = PrankWeb, these two sites also had signifi-
score, and the data also included the number  cantly higher scores and larger numbers of
of residues for each site. The top two binding  residues.

Table 2. 12 potential binding sites for the MAO-B pro-
tein detected by P2Rank, sorted by score.

Rank sorted ascending Score # of residues
1 51.19 56
2 45.43 50
3 3.87 14
4 3.62 15
5 3.34 14
6 3.24 7
7 2.70 13
8 2.49 11
9 2.39 14

10 1.95
11 1.35
12 1.04 13

Figures 6 and 7 show various binding 7 shows them inside the MAO-B enzyme. As
sites colored on the protein. Figure 6 shows seen in figure 6, binding sites tended to be in
the binding sites on the surface, and figure = concave pockets on the surface.
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Figure 6. Results of the P2Rank binding site prediction for the MAO-B pro-
tein. The gray represents the protein structure, while the colors represent po-
tential binding sites. The protein is visualized by “surface” and the pock-
ets are visualized by “surface (atoms),” shown from four different angles

As shown in figure 7, the light yellow and =~ DoGSiteScorer. These two sites also had dis-
red binding sites are significantly larger than  tinctively higher scores of 51.19 and 45.43,
the rest, suggesting that they might corre- compared with the rest of the sites with
spond to the sites P_0 and P_1 identified by  scores between 1 to 4.

Figure 7. Results of the P2Rank binding site prediction with the protein visualized by “cartoon”
and the pockets visualized by “surface (residues),” shown from three different angles
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Pharmacophore Mapping

After potential binding sites were found,
a pharmacophore map for the MAO-B pro-
tein that showed key features for binding was
created. Instead of using the complete phar-
macophore map for MAO-B, different com-
binations of pharmacophoric features were
selected from Pharmit to create three maps

Section 1. Preventive medicine

with 6 to 9 features each, as shown in Figure
8. Each map focused on a distinctive aspect
of MAO-B’s pharmacophoric structure. The
screening of the Enamine database for the
first map only resulted in 3 potential drug
candidates, so the second and third maps
were added to find more compounds, pro-
ducing 12 and 5 candidates respectively.

Figure 8. Pharmit pharmacophore maps (1, 2, and 3 from left to right) gen-
erated from the MAO-B protein used to run virtual screening. Green spheres
represent hydrophobic interactions, dark orange spheres represent negative
ions, light orange spheres represent hydrogen acceptors, purple spheres repre-
sent aromatic interactions, and white spheres represent hydrogen donors

Map 1

Tables 3—5, which summarize the 20 com-
pounds identified from the pharmacophore
mapping experiment, show that the features
of the compounds align closely with those of
the pharmacophore maps. A lower RMSD is
better, as it means the compound deviates
less from the map. Compounds yielded from
the third pharmacophore map had the lowest
RMSD scores, whereas those from the first

Map 2

Map 3

map had the highest RMSD scores. As shown
in Figure 8, Map 1 is larger and more spread
out than Map 2 and Map 3. Although the
compounds generated from Map 1 had high-
er RMSDs, they were still included to test if
a larger map might lead to drugs with better
docking capabilities despite having worse
matches.

Table 3. Name, root mean square deviation (RMSD), and structure
of drug candidates detected by Pharmit’s virtual screening of the
Enamine database with the first pharmacophore map

Name 74164535231 73810976496 73196311517
Structure
RMSD 0.440 0.460 0.512

11 DISCOVERY OF SMALL MOLECULE INHIBITORS OF MAO-B



The European Journal of Biomedical
and Life Sciences 2025, No 4

Section 1. Preventive medicine

Table 4. Name, root mean square deviation (RMSD), and struc-
ture of drug candidates detected by Pharmit’s virtual screening of the
Enamine database with the second pharmacophore map

Name 723810976496 72065614619 71082764572 71082764448

B g

Structure

RMSD 0.045 0.050 0.051 0.052
Name 71980993192 71980914346 756780075 71082766136
Structure ﬂ L%Qs
RMSD 0.056 0.061 0.062 0.063
Name 77911919636 74122876582 71980908378 74097793914
Structure Rﬁ\ 91?(7
RMSD 0.067 0.068 0.072 0.077

Table 5. Name, root mean square deviation (RMSD), and struc-
ture of drug candidates detected by Pharmit’s virtual screening of
the Enamine database with the third pharmacophore map.

Name 71201626990 721269216848 756790788 7256758453 256776036

Structure & &

RMSD 0.027 0.027

g e

0.027 0.028 0.029

Molecular Docking
After molecular docking was assessed for
each of the 20 compounds, most had a Swis-
sParam score around -8, —9, or —10. During

the docking simulation, the inhibitor was
given the freedom to rotate around a defined
box on the target and dock wherever possi-
ble. SwissDock then quantified the energy of
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the interaction to determine how favorable
binding would be. The top SwissParam score
represented the Gibbs free energy (AG) of the
best interaction in kilocalories per mole. The
more negative the AG value, the more spon-
taneous the interaction, meaning that it con-
sumed less energy and was more favorable.
10 compounds were selected by the most neg-
ative SwissParam score. The compound that
performed the best was Z3196311517, fol-
lowed by Z1082764448, the only two candi-
dates that had SwissParam scores below —10.
The SMILES of compound Z4097793914 was
not accepted by SwissDock, likely due to the
presence of boron, so it was removed from

Section 1. Preventive medicine

the screening. Compound Z3810976496 was
found to be repeated, so its duplicate was
taken out. The names and SwissParam scores
of the top 10 compounds are bolded in Table
6 below. Although the three candidates iden-
tified from the first pharmacophore map had
worse RMSD scores than the other seventeen,
their SwissParam scores were all in the top
10 compounds for the molecular docking ex-
periment. Compound Z3196311517 had the
worst RMSD score, but it also had the most
negative SwissParam score. The candidates
identified from the third pharmacophore
map generally had more positive SwissParam
scores, likely due to their smaller size.

Table 6. Results of molecular docking with SwissDock. In the residue interaction fig-
ures, the red ribbons represent the protein structure, the blue represents hydrogen bonds,
and the yellow represents ionic interactions. The top 10 drug candidates are bolded

Name 74164535231 73810976496 73196311517
SwissParam Score -9.8520 -9.9056 -10.7236
(kcal/mol)
m
Residue Interaction
Figure
Name 72065614619 71082764572 71082764448
SwissParam Score -9.4043 -9.7102 -10.6647
(kcal/mol)
"'w

Residue Interaction
Figure

""\.n""g'i

*-'“;@r{

Name

71980914346

SwissParam Score
(kcal/mol)

Residue Interaction
Figure

Name 71082766136

SwissParam Score

(kcal/mol) -9.6193

e

Residue Interaction
Figure
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Name 71980908378

71201626990 71269216848

SwissParam Score
(kcal/mol)

Residue Interaction
Figure

Name

SwissParam Score
(kcal/mol)

Residue Interaction
Figure

ADME Screening

After performing ADME screening on the
top 10 remaining drug candidates, the top 7
were selected based on whether they satisfied
Lipinski’s Rule of Five, a set of four rules that
predict oral bioavailability (Lipinski et al.,
1997). The molecular weight (MW), number
of hydrogen bond (H-bond) acceptors, num-
ber of H-bond donors, and consensus LogP
value for each drug candidate were used to
evaluate their adherence to Lipinski’s Rule
of Five. Although they were all in the top 10,

none of the three drug candidates selected
from the first pharmacophore map satisfied
Lipinski’s Rule of Five, likely due to their large
size. As a result, compounds Z1082764448,
756776036, 71082764572, 71980914346,
71082766136, 71980993192, and
72065614619 were selected as the top 7 po-
tential MAO-B inhibitors. Out of these seven,
compound Z1082764448 had the most neg-
ative SwissParam score. Table 7 summarizes
the results of the ADME screening.

Table 7. Physicochemical properties of 10 potential MAO-B inhibitors iden-
tified by SwissADME, sorted by SwissParam score. Green highlighting indi-
cates which compounds satisfy Lipinski’s Rule of Five (“RoF” column)

Mol. #H-bond # H-bond LogP Water Solu- GI absorp- BBB per-

Molecule . RoF - .
Weight acceptors donors Value bility tion meant

73196311517 0723 19 9 320 No  lehly Low No
g/mol soluble

71082764448 V297 ¢ 1 Do T COUIEEY e No
g/mol soluble

73810976496 °-1% 16 5 072 No  shly Low No
g/mol soluble

74164535231 20315 15 7 079 No  |lshly Low No
g/mol soluble

756776036 414.38 7 3 1.52 Yes Soluble Low No
g/mol

71082764572 205 ¢ 2 205 Yes Moderately No
g/mol Soluble

71980014346 +43-50 8 4 g gy SHCHEEIEY e No
g/mol Soluble
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Molecule Mol. #H-bond # H-bond LogP ROF Water Solu- GI absorp- BBB per-
Weight acceptors donors Value bility tion meant

71082766136 394.47 6 2 1.59 Yes Soluble High No
g/mol

71980993192 41643 9 4 0.35 Yes Soluble Low No
g/mol

72065614619 1147 5 5 126 Yes Modemately No
g/mol Soluble

Toxicity Screening 71980993192 were determined to be accept-

After the ADME screening, the remain-
ing seven molecules were evaluated with
ProTox-3.0 to determine their toxicity
classification and LD50 value. Only com-
pounds 71082764448, 756776036, and

ably safe, as they had LD50 value above 400
mg/kg and toxicity classification above 3.
The rest were deemed too toxic and eliminat-
ed from the screening. Results of the ProTox
screening are shown in Table 8.

Table 8. Toxicological properties of 7 potential MAO-B inhibitors iden-
tified by ProTox. Green highlighting indicates which compounds have
both LD50 value > 400 mg/kg and toxicity classification > 3

Name LD50 (mg/kg) Toxicity Classification

71082764448 2520 5

756776036 3000 5
71082764572 175 3
71980914346 29 2
71082766136 175 3
71980993192 1000 4
72065614619 13 2

For the remaining 3 drug candidates, the
network chart and toxicity radar chart were
assessed for additional toxicological analysis.
The network chart shows the active (toxic)
and inactive clusters, while the toxicity ra-
dar chart compares the active elements of
the compound against their acceptable lim-
its. Compounds passed the screening if they
had at most one element exceeding average
toxicity. Compound Z1082764448 exceed-
ed the average toxicity for three elements

15

(BBB by 3%, respiratory toxicity by 17%,
and neurotoxicity by 7%), and compound
71980993192 exceeded the average toxicity
for one element (respiratory toxicity by 14%).
As a result, only compounds Z56776036 and
71980993192 passed the toxicity screening,
although 71980993192 has the limitation of
its respiratory toxicity. Z56776036 is consid-
ered to be the safest of the top two molecules.
Table 9 shows the network and toxicity radar
chart results.
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Table 9. Network charts and toxicity radar charts generated by ProTox. The blue
dots represent the toxicity of the compound for a specific element, while the orange
dots represent the average toxicity of FDA approved drugs for that element
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Conclusion This experiment focused on identifying novel

MAO-B inhibitors with in silico screening to
optimize for high binding affinity, druglike
pharmacological properties, and low toxic-
ity. Using computational methodology, po-

MAO-B is a critical therapeutic target for
the neurodegenerative dementia Alzheimer’s
disease, as it causes AP plaques and neuro-
fibrillary tangles, two key pathways to AD.
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tential binding sites were identified on the
MAO-B protein with DoGSiteScorer, FTSite,
and PrankWeb. DoGSiteScorer was able to
identify 38 binding sites, FTSite identified
3, and PrankWeb identified 12. Pharmaco-
phore mapping was then used to screen the
Enamine database, yielding 20 potential
drug candidates. The 20 candidates were
subsequently evaluated via molecular dock-
ing, and 10 were determined to be bioactive.
SwissADME then identified that 7 of the top
10 adhered to Lipinski’s Rule of Five. Final-
ly, for toxicity prediction, ProTox was used
to identify the 2 lead compounds with tox-
icity classification above 3 and at most one
active element exceeding average toxicity.
This experiment successfully discovered two
promising MAO-B inhibitors as treatment

Section 1. Preventive medicine

for Alzheimer’s disease. The final candidates,
756776036 and 21980993192, had excellent
docking scores of —9.7320 and —9.4726 re-
spectively, strong ADME profiles, and high
LD50 values of 3000 mg/kg and 1000 mg/kg
respectively. This study represents a valuable
starting point for future work involving ad-
ditional pharmacophoric screening target-
ing different areas of the MAO-B protein,
as well as molecular docking for Chain A of
the MAO-B enzyme with SwissDock. Further
testing of the 2 lead compounds through in
vitro or in vivo screening is needed to con-
firm this paper’s findings, and additional in
silico discovery of lead compounds can be
conducted using the effective, low-cost meth-
odology described in this paper.
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