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Abstract. States of electrons in multilayer semiconductor structures are theoretically inves-
tigated in the semiclassical approximation, where one-electron wave functions of the stationary 
Schrödinger equation are calculated in the presence of various types of potential, which is a 
slowly varying function of the coordinate.

It is determined that the energy spectrum of electrons in the potential in the quadratic, cubic 
and biquadratic approximation takes discrete values and the steepness of the energy spectrum 
depends on the parameters of the expansion of the potential in coordinates.
Keywords: energy spectrum, multilayer structure, Schrödinger equation, size quantization, 
semiclassical approximation

Introduction
The progress of modern microelectron-

ics is largely determined by the study of the 
properties of systems with inhomogeneously 
distributed parameters, the development of 
methods for the effective theoretical analysis 
of such systems, the development and pro-
vision of objective methods for controlling 
technological processes that make it possi-
ble to create semiconductor layers with de-
sired properties (Shchuka A. A., 2007; Us-
anov, D. A. 2013). In this regard, below we 

consider the general questions of the propa-
gation of electron waves in a medium whose 
properties change only along a certain direc-
tion. The approach is based on the use of the 
one-electron stationary Schrödinger equa-
tion to describe the processes of elastic scat-
tering and tunneling of noninteracting spin-
less particles under the condition that their 
total energy is conserved.

The study of the electronic properties of 
both symmetric and asymmetric with respect 
to the geometric dimensions of the layers of 
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a semiconductor structure is relevant in con-
nection with the use of these structures in mi-
cro- or nanoelectronics and in other areas of 
solid state physics (Dragunov, 2006; Ivchen-
ko, 2005; Rasulov, 2018; Petrov, 1994; Rasu-
lov, 2020; Golub, 1995; Rasulov, 2020).

At present, molecular beam epitaxy and 
other methods of modern technology make it 
possible to obtain semiconductor layers with 
an arbitrary profile of composition change 
(structure with a quantum well) to improve 
the characteristics of devices based on them 
(Usanov, D. A., 2013). In this case, the prob-
lem of electronic states is reduced to the 
problem of the behavior of a particle in po-
tential wells of an arbitrary shape. In partic-
ular, to create a new generation of resonant 
tunneling diodes and heterolasers with sep-
arated electronic and optical confinement, 
structures with rectangular size-quantized 
wells are used, in the center of which there is 
an additional energy dip.

The study of the electronic states in the 
structures mentioned above leads to the cal-
culation of the one-electron wave functions 
of the stationary Schrödinger equation in the 
semiclassical approximation in the presence of 
the potential U(x), which we will consider as a 
slowly varying function of the x coordinate.

Basic relationships
Then the one-dimensional Schrödinger 

equation can be written as
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Assuming that the system under con-
sideration is close to the classical one in its 
properties, we will look for a solution in the 
form of a rows indegrees of the Planck con-
stant, i. e.
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Then the general solution of equation (1) 
has the form

� x
C

p x

i
p x dx

C

p x

i
p x dx

� � �
� �

� ��
�
�

�
�
� �

�
� �

� � ��
�
�

�

�

1

2

� �

� �

exp

exp



��
�
�,

, (4)

where p x m E U x� � � � � �� ��� ��2
1 2/

, m  and E  
are the effective mass and energy of current 
carriers.

In classically inaccessible energy regions, 
i. e. at, the momentum of the current carriers 
becomes imaginary. Then in these regions (4) 
takes the form
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Note that the accuracy of the semiclas-
sical approximation does not allow taking 
into account both terms simultaneously, and 
therefore, in some cases, we will not take into 
account the exponentially small term in (4) 
and (5).

Linear and quadratic approximation
Let us consider an isolated classical turning 

point at x a= , far from which the semiclassi-
cal approximation is applicable for calculating 
the transparency coefficient of a potential bar-
rier. Therefore, the solutions of the Schrödenger 
equation in the allowed and forbidden areas 
can be found by formulas (4) – (5).

The wave function near the turning point 
can be found by solving the Schrödinger 
equation, where the potential energy U(x) 
near the turning point ( )x a=  can be repre-
sented as
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dU
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or

U x U U U� � � � � � ��� � ( )� � �� �0 0 0
2 . (6 b)

Then the Schrödinger equation can be 
written as
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whose general solution is an arbitrary linear 
combination of hypergeometric functions, 
i. e.
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In the general case,
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, which corresponds to 

an exponentially growing wave function. 
Therefore, to choose a wave function that sat-
isfies the conditions of finiteness of the wave 
functions at infinity, i. e. satisfying this quan-
tum mechanical approach, there are two al-
ternative cases:
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and the energy spectrum of current carriers 
is quantized and is defined as

 k n k
k
k0 2

1 2 1
2

2
1 21 16

4
� �� � �/

/ . (10)

From (10) we obtain an expression for the 
size-quantized energy spectrum in the form
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and the energy spectrum of current carriers is 
quantized and is determined by the relation:
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For a quantitative analysis of the 
size-quantized energy spectrum, we assume 
that �� �� �� �U UU� ��0 0 .  Then we have an ex-
pression for the size-quantized energy spec-
trum in a form convenient for quantitative 
calculation
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Similarly, it is easy to obtain the following 
expression
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It can be seen from formulas (11) and 
(13) that to fulfill the condition of finiteness 
of the wave functions at infinity, there are two 
types of energy spectrum, and both depend 
nonlinearly on the size quantization number, 
i. e. the dimensionally quantized energy spec-
trum is not equidistant.

Figure 1 a and b shows the dependences 
of the size-quantized energy spectra, charac-

terized by the values of E n U x
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We note here that in quantitative calcu-
lations it is convenient to use the connection 
of the above hypergeometric functions with 
Hermite polynomials:
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Figure 1. Dependences of the energy quantities
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Conclusion
Next, consider the following cubic and bi-

quadratic terms in (6), i. e.

U x m x x l x l� � � � � � � � �1
2
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where l m� � � � . ε3  and ε4  are the expan-
sion coefficients of U(x) in a series of x/l. The 
solution of the Schrödinger equation can be 
done in a similar way. In this case, it passes 
into the Schrödenger equation for a harmon-
ic oscillator at �3 0�  and �4 0� . Then it can 
be solved using perturbation theory (Landau, 
1981). In this case, the energy of particles in 
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potential (16) in the zeroth approximation is 
equal to the energy of a harmonic oscillator:
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and the wave function in the zero approxima-
tion has the form
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Then the calculation of the energy spec-
trum of electrons according to the perturba-
tion theory gives the following result
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where � � �� � �1 
, m  is the effective elec-

tron mass, the Ox axis is chosen as the size 
quantization axis, g � � �2 1, in the spherical 
approximation in the E k k k my z( )� � �� � �� �

2 2 2 2 
E k k k my z( )� � �� � �� �

2 2 2 2 energy spectrum. Calculations show 
that the energy spectrum of electrons in po-
tential (16) takes discrete values and the 
steepness of the energy spectrum is more no-
ticeable, the greater g � � �2 1, and it also de-
creases with increasing � �1 � � for arbitrary 
values of n .
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