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Abstract
Loop closure detection is significant within the field of robotics due to its role in enhancing ac-

curacy and system efficiency. This study focuses on differentiating between closed-loop and open-
loop behaviors in robotic arm motion using a forward dynamics dataset. Closed-loop systems offer 
heightened accuracy and reliability, finding widespread utility in automotive manufacturing, while 
open-loop systems, characterized by distinct traits, are extensively employed in entertainment 
industries. Leveraging a vast dataset encompassing millions of data points covering both closed 
and open loop movements, this paper employs classical machine and deep learning methodologies 
to classify such behaviors. Using conventional machine learning models, the discriminatory power 
is observed to be impressive, with decision trees yielding classification accuracies and F1-scores of 
up to 90%. Complementing these efforts, a neural network model is employed, achieving a similar 
accuracy of 91%. This research not only builds upon existing work but also introduces a novel 
comparative framework that to the best of our knowledge has been unexplored for such a large 
dataset. By harnessing data generated from a 3-degree-of-freedom robotic arm, the study shows 
success in discerning the fundamental nature of open-loop or closed-loop configurations. This 
paper contributes to advancing the understanding of loop closure detection, holding implications 
for enhancing robotic control and performance across diverse applications.
Keywords: Deep learning, supervised learning, prediction, classification, Machine learning, 
Forward Dynamics, Neural Networks, Robotics

1. Introduction
Loop closure detection, a task central to 

robotic autonomy, involves the recognition of 

previously visited states or configurations, en-
abling a robot to reconcile and comprehend its 
position in its environment or configuration 
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space (Bombois et al., 2015). This capability 
becomes even more crucial when discussing 
robotic arms, devices that, by their nature, 
have the potential for high degrees of redun-
dancy. Identifying and avoiding repetitive 
motions is critical for tasks that demand effi-
ciency, from delicate assembly lines in indus-
tries to precise medical surgeries.

At the heart of robotic motions lies for-
ward dynamics, an approach that predicts 
future states based on current conditions and 
inputs. Traditional systems utilizing forward 
dynamics alone offer foundational predict-
ability rooted in the principles of causality 
and determinism, drawing from the well-es-
tablished laws of physics to predict a system’s 
trajectory based on its present state and the 
forces influencing it (Borovic et al., 2005). 
Forward dynamics involves solving equations 
of motion and applying Newtonian mechanics 
to model how forces and accelerations affect 
a system’s movement over time, providing a 
deterministic link between initial conditions 
and future behavior. However, these tradi-
tional techniques can face challenges when 
confronted with intricate tasks or unexpect-
ed disruptions, prompting the integration of 
machine and deep learning to complement 
these approaches. This synergy between for-
ward dynamics and learning techniques em-
powers robots to manage the complexities of 
real-world environments and tasks that may 
elude deterministic models, enabling them to 
possess both foundational predictability and 
the capacity to learn and adapt from interac-
tions with their surroundings. As robotic arms 
operate within dynamic and unpredictable 
environments, the integration of machine and 
deep learning techniques provides a promis-
ing pathway to enhance adaptability and pre-
cision (Agudelo-Espana et al., 2020).

Before diving further, it’s imperative to 
understand the difference between open-
loop and closed-loop systems in robotic 
arms. Open-loop systems, often referred to 
as feed-forward systems, operate based on 
a predefined set of instructions without any 
feedback mechanism. They execute tasks 
without adjusting to discrepancies or envi-
ronmental changes (Surati et al., 2021). In 
contrast, closed-loop systems, or feedback 
systems, constantly take input from sensors 
or other feedback mechanisms, adjusting 

their behavior based on this feedback. This 
inherent adaptability makes closed-loop sys-
tems more responsive to real-world dynam-
ics (Soori et al., 2023). However, the chal-
lenge lies in determining whether a robotic 
arm is functioning in an open or closed-loop 
manner during its operations. This distinc-
tion becomes vital as closed-loop systems 
often require more computational resources 
but offer superior precision, while open-loop 
systems are faster but might not be as accu-
rate in dynamic environments.

With the rise of Model Predictive Control 
(MPC) in robotic applications, the integration 
of machine learning models becomes even 
more compelling. MPC, at its core, is about 
making decisions based on predicted future 
states. When merged with deep learning mod-
els, as seen in innovations like Model Predic-
tive Interaction Control (MPIC), there’s an en-
hancement in both the accuracy of predictions 
and the quality of interactions between the 
robot and its environment (Vaisi, 2022).

Recent research also emphasizes the po-
tential of ML and DL in predicting whether 
a robotic arm is operating in an open-loop 
or closed-loop manner. By predicting this 
state accurately, one can optimize the sys-
tem’s computational efficiency and precision, 
tailoring its operations based on real-time 
requirements (Trianni and Lopez-Lbanez, 
2015). Such predictions could play a pivotal 
role in sectors where both speed and preci-
sion are vital, allowing robotic arms to switch 
between modes as required.

Furthermore, the paradigm of machine 
learning in robotics extends beyond mere pre-
dictive accuracy. Loop closure detection can 
benefit immensely from other learning para-
digms such as imitation learning, where robot-
ic arms learn from human demonstrators, and 
transfer learning, which allows for the trans-
fer of knowledge across different tasks or even 
different robotic platforms. The integration of 
these methods ensures that robotic arms do 
not waste computational resources relearning 
or re-exploring configurations they’ve previ-
ously encountered, further enhancing efficien-
cy (Gold et al., 2021; Mellatshahi, 2021).

In the broader perspective, the realm of 
loop closure detection in robotic arms stands 
at an intersection. On one side, we have the 
established foundation of forward dynam-
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ics and the conventional wisdom of open vs. 
closed-loop systems, on the other, the rapid-
ly evolving world of machine learning. As re-
search progresses, it’s becoming abundantly 
clear that the union of these domains offers 
a pathway to robots that are not just autono-
mous but also incredibly adaptive and intelli-
gent (Liu et al., 2021).

The quest for such an integration is not 
just academic. As industries and medical 
fields become increasingly reliant on robot-
ic arms for precision tasks, the demand for 
machines that can seamlessly integrate into 
dynamic environments, recognize their his-
torical interactions, and adapt on-the-fly 
becomes paramount. This fusion of forward 
dynamics and machine learning, as under-
scored by recent research, seems poised to 
deliver on this front, heralding a new era in 
robotic arm capabilities and applications.

In this paper we look at a comprehensive 
forward dynamics dataset consisting of up to 9 
million rows of data. To the best of our knowl-
edge this is one of the largest such datasets on 
which such a study exploring the feasibility of 
ML and DL methods has been conducted.

The rest of the paper is organized as fol-
lows: Section 2 explains the research meth-
odology, Section 3 discusses the obtained 
results from various models, and Section 4 
summarizes the research conclusions.

Results
In this section, a comprehensive analysis 

of accuracy outcomes for the conventional 
models is presented, followed by a detailed 
examination of the top-performing Decision 
Tree model. Each model’s performance is 
meticulously evaluated across diverse data-
set sizes, encompassing 1 million, 1.8 mil-
lion, 2.7 million, 4.5 million, 6.3 million, 
and 9 million instances. These insights offer 
a profound understanding of the models’ ca-
pacities and limitations in various data con-
texts. This is shown in Figure 5.

The Decision Tree model emerges as a 
focal point, showcasing a remarkable accura-
cy escalation as dataset size increases. Com-
mencing at 84% accuracy with a dataset of 
1 million instances, it attains an impressive 
90% accuracy with 9 million instances. This 
pronounced surge underscores the model’s 
inherent ability to delineate intricate deci-

sion boundaries, effectively capturing com-
plex relationships within data structures. The 
Decision Tree model adapts seamlessly to en-
compass a larger number of data instances, 
refining its predictive potential.

In tandem, the SVM model demonstrates 
incremental accuracy improvements with ex-
panding dataset sizes. Progressing from 73% 
to 79%, its pattern of enhancement signifies 
SVM’s proficiency in outlining intricate deci-
sion boundaries within higher-dimensional 
spaces. Yet, the model’s scalability is chal-
lenged by computational demands posed by 
larger datasets.

Conversely, the Random Forest model, 
despite its commendable performance, does 
not surpass the Decision Tree model. With 
an accuracy of 85% on a dataset of 9 million 
instances, its ensemble framework efficient-
ly addresses overfitting concerns. However, 
nuanced analysis reveals the Decision Tree’s 
singular accomplishment of 90% accuracy – 
attributed to its remarkable ability to deci-
pher intricate decision boundaries within the 
dataset.

On the other end of the spectrum, the 
Logistic Regression model consistently lags 
behind its counterparts. Starting at 77% ac-
curacy with 1 million instances, it reaches 
83% with 9 million instances. This relative 
underperformance arises from the model’s 
simplicity in capturing linear relationships 
within data. As dataset complexity expands, 
the model’s linear assumptions may fall short 
in encapsulating intricate decision boundar-
ies, affecting its predictive efficacy.

A closer examination unveils the Logistic 
Regression model’s vulnerability to complex 
data interdependencies. Reliant on linear re-
lationships, it might struggle to navigate in-
tricate relationships present in the dataset. 
Unlike the Decision Tree’s ability to discern 
intricate boundaries, the Logistic Regres-
sion model’s simplicity may under-represent 
non-linear patterns, particularly within larg-
er datasets.

For the neural network, the attained accu-
racies at different dataset sizes are as follows: 
87% for 1 million instances, 87% for 1.8 mil-
lion instances, 89% for 2.7 million instanc-
es, 90% for 4.5 million instances, and 91% 
for both 6.3 million and 9 million instances. 
This sequence of accuracy values reveals a 
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consistent upward trajectory in performance 
as the dataset size increases.

The model’s accuracy progression from 
87% with 1 million instances to 91% with 
9 million instances underscores its capa-
bility to effectively leverage larger datasets. 
This improvement in performance can be 

attributed to the neural network’s inherent 
adaptability and capacity to capture intricate 
patterns present in more extensive datasets. 
The model’s architectural flexibility enables 
it to discern higher-order features and rela-
tionships as the dataset expands, leading to 
enhanced predictive accuracy.

Figure 5. Accuracies for all dataset sizes and models

The observed correlation between dataset 
size and accuracy underscores the neural net-
work’s aptitude for data-driven insights. This 
trend of increasing accuracy with larger data-
sets substantiates the model’s proficiency in 
uncovering nuanced patterns that are other-
wise less discernible with smaller datasets. 
It reflects the model’s adeptness at grasping 
complex data relationships and effectively le-
veraging them to make accurate predictions.

Discussion of Results
The comprehensive analysis of both tra-

ditional machine learning models and the 
advanced neural network architecture re-
veals discernible trends in classification and 
regression tasks. The Decision Tree model 
consistently emerges as a strong contender, 
exhibiting commendable accuracy across di-
verse dataset sizes. Its attainment of 90% ac-
curacy underscores its significance, driven by 
its intrinsic capability to discern intricate de-
cision boundaries and adapt to varying data 
scenarios.

On the contrary, the Support Vector Ma-
chine (SVM) model demonstrates relatively 
modest performance in both classification 
and regression tasks. The SVM’s limitations 
in handling intricate feature interactions and 
its sensitivity to hyperparameters contribute 
to its relatively subdued accuracy. Despite 
these constraints, recognizing its contextual 
relevance remains crucial for specialized ap-
plications.

The Random Forest model stands out as 
a robust competitor, maintaining consistent 
accuracy across different dataset sizes. Its 
ensemble nature, harnessing multiple deci-
sion trees, reinforces predictive reliability. 
Meanwhile, the Logistic Regression model 
consistently upholds its credibility, deliver-
ing respectable accuracy across datasets of 
varying extents.

The pinnacle of performance is reached 
through the meticulously designed neural 
network architecture, consistently achieving 
an impressive 91% accuracy. This under-
scores the model’s adaptability in capturing 
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intricate data patterns. The refined equilibri-
um achieved between model complexity and 
generalization, through iterative adjustments 
to hidden layers, serves as a foundation for 
consistent accuracy enhancements.

The neural network’s supremacy aris-
es from its architectural flexibility. Deep 
learning models, exemplified here, allow for 
customization of layer structures to cater to 
data nuances. The neural network’s inher-
ent architecture, tailored for sequential and 
temporal data, magnifies its predictive ca-
pabilities. Incremental training mechanisms 
further bolster this advantage, enabling 
adaptive improvements across successive ep-
ochs. The neural network’s capacity to learn 

and retain contextual information within the 
dataset amplifies its proficiency in processing 
extensive sequences.

Methodology
The overall methodology of the paper is 

shown in figure 1 and is as follows: data was 
used from the existing dataset involving a 
3 degrees of freedom DOF robotic arm (Di-
ego, 2020); the data was preprocessed into a 
dataset which was used to train both a set of 
conventional machine learning models and 
a neural network. The F‑1 scores and accu-
racies were then calculated for each model. 
These steps are highlighted in the subsec-
tions that follow.

Figure 1. Flowchart of the research process

Data Preprocessing
The training data used was through a for-

ward dynamics dataset involving a 3 DOF 
robotic arm; the initial dataset consists of 54 
million rows of data and 3 columns. This ro-
botic arm dataset has been tested in closed 
loop and open loop environments. The follow-
ing data were collected for both systems: mea-
sured velocity, constrained torque, measured 
torque, measured angle. By combining both 
the data from both closed loop and open loop 
datasets, a merged dataset with a combination 

of both control systems were formed. In total 
there were over 54 million rows of data, out 
of which, the data size was reduced in quanta 
ranging from 1 million to 9 million data rows 
for feasibility of processing). This was done by 
randomly selecting 100 000–1 000 000 rows of 
data from each set of data.

The data contains 3 columns of numer-
ical data, the other two columns were added 
simply for classification purposes during 
training. As shown below:
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Table 1. Table Illustration

Sequence 
Rollouts

Sequence 
Length

Number of degrees 
of freedom

Classification of data
Open loop/Closed 

loop
–0.327145 –0.329200 –0.311136 Constrained Torques Closed Loop

0.343809 –0.132684 0.183878 Desired Torques Closed Loop
–0.339387 0.148001 0.344629 Measured Torque Close loop

1.668972 1.517300 3.097472 Measured Angles Open Loop
4.654593 0.532875 –1.17895 Measured Velocity Open Loop

The first three columns allow the models 
to learn and predict whether the system is 
open loop or close loop. The data pertaining 
to “Sequence Rollouts,” “Sequence Length”, 
and the “Number of Degrees of Freedom” play 
a pivotal role in predicting whether a robotic 
arm operates within an open loop or closed 
loop system framework. After analyzing 
the dataset and comparing data from open-
loop and closed-loop systems in the robotic 
arm, several key trends emerged. First, “Se-
quence Rollouts,” representing predefined 
movements, provided insights into real-time 
adaptability. The “Sequence Length” played 
a role in indicating precision and alignment 
with closed-loop systems, with longer se-
quences favoring such systems, while short-
er ones were associated with open-loop sys-
tems. Additionally, the “Number of Degrees 
of Freedom” influenced control complexity, 
with higher degrees favoring closed-loop 
systems, necessitating advanced control 
methods, while lower degrees were typical of 
open-loop systems.

These findings highlight the distinctions 
between open and closed-loop systems in 
the robotic arm context. The fourth column 
serves the purpose of classification, delin-
eating the specific measurement category to 
which each corresponding row relates. These 
classifications encompass nine distinct types: 
encompassing measured velocities, measured 
torques, constrained torques, measured an-
gles, measured velocities sine, measured 
torques sine, constrained torques sine, de-
sired torques sine, and measured angles sine. 
Notably, the initial quartet pertains to open-
loop data, while the latter quintet pertains to 
closed-loop data. The fifth column assumes 
the role of differentiating between the row’s 
status as open-loop or closed-loop data. In 
summary, the integrated utilization of the first 
three columns, alongside the detailed classi-
fications within the fourth and fifth columns, 
empowers the models to proficiently differen-
tiate between open loop and closed loop sys-
tems, while also contributing to the enhanced 
predictive capabilities of the entire framework.

Table 2. One-Hot Encoding for Column 4

Column 4

Mea-
sured 

Veloci-
ties

Mea-
sured 

Torques

Con-
strained 
Torques

Mea-
sured 

Angles

Mea-
sured 

Velocity 
Sine

Mea-
sured 

Torques 
Sine

Con-
strained 
Torques 

Sine

Mea-
sured 

Angles 
Sine

Desired 
Torques

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
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The dataset underwent preprocessing by 
using one-hot encoding, leading to the cre-
ation of encoded features that captured rel-
evant attributes. Columns 4 and 5 were one-
hot encoded as shown in Tables 1 and 2. The 
dataset was divided, allocating 30% of the 
data for training and reserving the remaining 
70% for comprehensive testing. Additionally, 

a subset of the training data was further set 
aside for validation purposes, enabling thor-
ough assessment during the model training 
process. Data preprocessing played a pivot-
al role, ensuring cleanliness and outlier-free 
datasets. Exploratory data analysis revealed 
essential patterns and correlations that in-
formed subsequent decisions.

Table 3. One-Hot Encoding for Column 5

Column 5
Open Loop System Closed Loop System

1 0
0 1

Software & Hardware Tools
Data preprocessing and model training 

were conducted in Python, employing core li-
braries including NumPy, Pandas, and scikit-
learn for efficient data manipulation, scaling, 
and classification. The deep learning compo-
nent utilized TensorFlow and Keras, encom-
passing diverse layers, optimizers, and call-
backs. This integrated approach facilitated 
robust analysis and model construction.

Conventional ML Models
The four conventional machine learning 

models serve as a benchmark for the neural 
network approach. A systematic examination 
of conventional machine learning models 
was undertaken to discern the operation-
al paradigm of the system, classifying it as 
open loop or closed loop based on the avail-
able data. Support Vector Machines (SVM), 
Decision Tree, Random Forest, and Logistic 
Regression were the models of choice. These 
models were chosen for their wide recogni-
tion and versatility in addressing classifica-
tion tasks. The SVM model was instantiated 
with a linear kernel, enabling it to effectively 
draw decision boundaries between classes. 
In the case of the Decision Tree, its parame-
ters were configured, notably including max-
imum depth and criteria for splitting, thus 
enhancing its discriminatory power. The 
Random Forest classifier consists of an en-
semble of decision trees, each contributing to 
the overall prediction consensus, with specif-
ic emphasis on the number of trees and their 
maximum depth. Additionally, the Logistic 
Regression model, prized for its simplicity 

and interpretability, served as a benchmark 
for the subsequent analyses.

After training the models, a series of pre-
dictions was carried out on both the valida-
tion and test datasets. Rigorous assessments 
of model performance ensued, encompassing 
metrics such as accuracy and comprehensive 
classification reports. This multifaceted an-
alytical progression is complemented by an 
iterative testing approach that encompasses 
dataset sizes ranging from 1 million to 9 mil-
lion data points in the following quanta‑1 mil-
lion, 1.8 million, 2.7 million, 4.5 million, 6.3 
million, and 9 million. This comprehensive 
experimentation strategy lays the ground-
work for a subsequent in-depth exploration 
of a deep learning model’s effectiveness when 
compared to the established machine learn-
ing models.

Deep Learning: Neural Networks
This research advances beyond conven-

tional machine learning paradigms, culmi-
nating in the formulation of a sophisticated 
deep learning neural network model shown 
in Table 3. The upcoming discussion will ex-
plain how this neural network is constructed 
and configured, highlighting that it is more 
effective at making predictions than the 
methods used before it.

In pursuit of optimizing the neural net-
work’s performance, a methodical approach 
was undertaken. The process commenced 
with a rigorous exploration of the model’s ar-
chitecture, involving variations in the num-
ber of layers, units per layer, and activation 
functions. This iterative refinement enabled 
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the model to strike an equilibrium between 
complexity and predictive efficacy. Activation 
functions were meticulously evaluated, initial-
ly employing Leaky Re LU and subsequently 
scrutinizing Re LU and Mish for potential ac-
curacy enhancements. Overfitting was metic-

ulously addressed through the introduction 
of L2 regularization and dropout techniques, 
with careful adjustments made to regulariza-
tion strength. The strategic placement of batch 
normalization within the model aimed at max-
imizing training stability and convergence.

Table 3. Neural Network details

Optimization Details
Data Loading Loading data from the merged dataset
Target Label En-
coding

Encoded target labels ‘Column5’ and ‘Column4’ using LabelEncoder
(‘le5’ and ‘le4)

Data Splitting
Split data into training and testing sets (X_train, X_test, y_train, y_
test).

Data Standardiza-
tion

Standardized features using Standard Scaler (scaler).

Neural Network 
Model

Constructed a Sequential model (model) with multiple layers.

Model Architec-
ture

– Input Layer: 256 neurons, normal initialization, L2 regularization 
(0.01), Leaky Re LU activation, batch normalization, dropout (40% rate).
– Hidden Layers: Depths of 128, 64, 32, and 16 neutrons with Leaky 
Re LU activation, batch normalization, and dropout (40% rate).
– Output Layer: Single neuron, sigmoid activation function.

Model Compila-
tion

Compiled the model with Adam optimizer (learning rate: 0.0005), 
binary cross-entropy loss, and accuracy metric.

Callbacks
Defined Early Stopping (patience: 15 epochs) and Reduce LROn Pla-
teau (factor: 0.1, patience: 7) callbacks for training optimization.

Training
Trained the model with batch size of 32, 150 epochs, sample weights 
computed using “balanced” strategy, and callbacks (early_stopping and 
reduce_lr).

Model evaluation
Evaluated the model’s performance on the test dataset using classifica-
tion_report from sklearn.metrics.

Hyperparameter tuning played a pivot-
al role, with systematic adjustments to the 
learning rate, batch size, and epoch count for 
optimized convergence behavior. Diverse opti-
mization algorithms, including Adam and RM-
SProp, were exhaustively investigated for their 
potential to improve model convergence. The 
integration of early stopping and learning rate 
reduction strategies was instrumental in avert-
ing overfitting and enhancing training efficien-
cy. Feature engineering enriched the model’s 
predictive capability by introducing novel 
information. An exhaustive hyperparameter 
tuning process, encompassing grid search and 

random search methodologies, meticulously 
fine-tuned the model’s configuration.

The iterative refinement process, guided 
by continuous evaluation on both validation 
and test datasets, culminated in a well-cali-
brated neural network architecture. At its 
core, this architecture adheres to the sequen-
tial model structure intrinsic to deep learn-
ing frameworks. It harmoniously combines 
organized layers with efficient data flow, 
expediting the intricate process of feature 
learning. The model, calibrated to utilize the 
Adam optimizer with a learning rate of 0.001, 
adeptly minimizes binary cross-entropy loss 



LOOP CLOSURE DETECTION IN A ROBOTIC ARM USING45

The Austrian Journal of Technical 
and Natural Sciences, No 9 – 10

Section 3. Mechaning engeeniring

while meticulously tracking accuracy during 
150 training epochs with a batch size of 32. 
Addressing class imbalance, sample weights 
were calculated using the ‘balanced’ strate-
gy. The reinforcement of training was further 
bolstered by callback mechanisms, including 
early stopping and learning rate reduction, 
promoting timely convergence and princi-
pled adaptation. Model evaluation rigorous-
ly adhered to academic standards, with the 
‘classification_report’ function employed to 
substantiate the model’s prowess across var-
ious class delineations through precision, re-
call, F1-score, and support metrics.

In conclusion, this deep learning neural 
network is characterized by tested height-
ened accuracy and resilience.

F1 Scores
The models were each compared using 

the F1 scores they obtained on the validation 
data. For binary classification problems, the 
F1 score is calculated by this equation (Kun-
du, 2022).

F1 Score = 2 * ((Precision * Recall)/ 
/(Precision + Recall))

Precision is the ratio of the number of true 
positives to the sum of true positive and false 
positives. The precision in F1 Score shows how 
close the measured values are to each other. 
Recall is the comparison of true positives to 
the sum of true positive and false negatives 
like precision but they represent the model’s 
ability to find the relevant cases in a dataset.

This equation serves as a crucial measure 
of the models’ performance, encapsulating 
the balance between the precision of positive 
predictions and the recall of relevant instanc-
es. A higher F1 score indicates a more favor-
able trade-off between precision and recall, 
signifying a model that excels at both accu-
rate identification of positive instances and 
comprehensive coverage of relevant cases.

In the context of this study’s multi-class 
classification problem, the comparative anal-
ysis of the models employed a micro-averaged 
F1 score. This selection ensured equitable 
consideration of every data entry within the 
dataset, an imperative choice given the bal-
anced nature of the classes, which stemmed 
from the application of percentile-based 
thresholds. The decision to adopt the mi-
cro-averaged F1 score was grounded in the 

alignment of class distribution and the objec-
tive of maintaining balance across classes.

The rationale behind choosing the F1 
score as the benchmark for model compari-
son lies in its capacity to provide an impartial 
assessment. Through its incorporation, the 
study gained the ability to objectively evalu-
ate the models, a crucial aspect in the pursuit 
of discerning the model’s efficacy. Moreover, 
the F1 score offers a unique vantage point by 
simultaneously acknowledging periods of el-
evated case counts and striking a harmoni-
ous equilibrium between accuracy and recall.

Conclusion
This paper has delved into the intricate 

realm of loop closure detection within the 
domain of robotic arm motion. The ability to 
differentiate between closed-loop and open-
loop behaviors holds significant implications 
for enhancing accuracy and efficiency in ro-
botic systems. This research has harnessed a 
vast forward dynamics dataset encompassing 
over 1 million data points, focusing on classi-
fying these behaviors using both classical and 
deep learning methodologies.

Looking ahead, this study opens the door 
to numerous avenues for future research. 
The integration of other learning paradigms, 
such as imitation learning and transfer learn-
ing, could further enhance the adaptabili-
ty and efficiency of robotic arms. Exploring 
the potential of reinforcement learning and 
model predictive control can augment the 
accuracy and interactions of robotic systems. 
Moreover, investigations into hardware im-
provements, including faster processors, 
could significantly expedite training times 
and broaden the scope of research.

The significance of this study lies not only 
in its contributions to loop closure detection 
but also in its broader implications for robot-
ics. As industries increasingly rely on robotic 
arms for precision tasks, the ability to seam-
lessly integrate these systems into dynam-
ic environments becomes paramount. The 
fusion of traditional forward dynamics with 
modern machine learning paves the way for 
adaptable, intelligent, and autonomous robot-
ic arms that can navigate complex scenarios 
with efficiency and precision.

In summary, this research extends the 
boundaries of loop closure detection, pre-
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senting a comparative framework that bridg-
es classical approaches and cutting-edge 
deep learning techniques. By shedding light 
on the fundamental nature of closed-loop 
and open-loop behaviors in robotic arm mo-

tion, this study advances the understanding 
of robotic control and performance, with im-
plications for diverse applications across in-
dustries and fields.
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