
Section 2. Technical sciences in general

6

Section 2. Technical sciences in general
https://doi.org/10.29013/AJT-23-3.4-6-10

Bukarev Anton,
National Research University of Electronic Technology, Russia

IMPROVING MOBILE APP QUALITY THROUGH 
OPTIMIZED TESTING STRATEGIES

Abstract. This article explores the complexities and challenges associated with the testing process 
on many devices, particularly in the context of mobile applications. It highlights the importance of 
optimizing the testing process to ensure high-quality products and reduce time to market. The article 
also discusses alternative approaches to address these challenges, such as utilizing cloud services, 
automated testing, and integrating with CI/CD systems, which can improve efficiency and product 
quality.

Keywords: testing process, mobile applications, optimization, cloud services, automated testing, 
CI/CD integration.

Introduction
In the present study, the development and im-

plementation of an optimized method for initiating 
automated tests utilizing Remote Procedure Call 
(RPC) is examined. The objective of this research 
is to establish an efficient and versatile system for 
automated software testing, which will facilitate a 
reduction in time and resources expended on test 
execution, while ensuring enhanced scalability and 
adaptability to diverse testing platforms and libraries.

Peculiarities of the Testing Process on many 
Devices

Ensuring high product quality in the market is 
inextricably linked to the proper organization of the 
testing process. Consider the case of a mobile ap-
plication designed for warehouse management that 
utilizes a device’s camera for recognizing product 
barcodes. There exists a multitude of mobile device 
manufacturers that differ in both hardware charac-
teristics and software components. Each hardware 
and software combination may affect the camera and 

sensor performance; therefore, the developed appli-
cation must be adapted for each case [1; 2].

Conducting software testing on all available devic-
es and hardware-software combinations is impractical. 
As a result, the most popular devices in the market are 
typically selected and tested first. However, even such 
a sample may comprise 50–100 devices.

Performing local tests on such a quantity of de-
vices entails several complexities. Local testing on 
multiple mobile devices requires reliable connection 
and management provisions. Connecting and man-
aging many devices can prove to be a complicated 
and fragile process, necessitating substantial efforts 
and time for setup and maintaining stable operations. 
Furthermore, compatibility issues may arise between 
various devices and operating systems, complicating 
the connection and management process.

Under local conditions, using multiple mobile 
devices may result in device failures due to hardware 
malfunctions, power issues, overheating, or improp-
er usage. Recovering devices after such failures can 



IMPROVING MOBILE APP QUALITY THROUGH OPTIMIZED TESTING STRATEGIES

7

be a complex and costly process, requiring additional 
expenditures on repair or equipment replacement.

Addressing the problems associated with local 
testing on multiple mobile devices may demand 
considerable time and financial resources. This may 
include equipment repair or replacement costs, tech-
nical support expenses, and time spent diagnosing 
and resolving issues. All these factors reduce testing 
efficiency and may lead to delays in software product 
development and release [3].

Given the complexity and costs involved in ad-
dressing the problems, developers and testers should 
consider alternative approaches to organizing the 
testing process. Possible solutions may include using 
cloud services for conducting testing on remote de-
vices, applying automated tests, and integrating with 
CI/CD systems. These approaches can alleviate the 
team’s workload, ensure flexibility, and reduce the 
time spent on testing, ultimately enhancing software 
product quality, and expediting its market launch.

Optimization of the Testing Process through 
the Application of RPC

To enhance the testing process, the follow-
ing technical solution has been proposed. A task 
scheduler (figure 1) has been developed to control 
the testing process on remote devices. This solu-
tion enables the application of existing automat-
ed testing approaches without the need to make 
significant changes to the existing infrastructure. 
The task scheduler incorporates a module for re-
motely initiating tests and facilitating communi-
cation with them. In addition, a module for data 
exchange with the task scheduler is installed on 
cloud devices [4; 5].

In a test cloud, several devices of the same mod-
el may be present. In this context, the task sched-
uler is capable of uniformly distributing the set of 
test scenarios among devices of the same model or 
devices with identical hardware and software con-
figurations.

Figure 1. Test cases distribution between cloud devices

The test initiation module and the wrapper (fig-
ure 2) for the tested library are generated automati-
cally. Consequently, the system creates a compatible 
interface for each library, significantly saving time 
in preparing the testing process, as this step occurs 
almost instantaneously. The proposed solution is 
cross-platform, allowing developers to describe test 
scenarios once, which are then executed uniformly 

across all tested platforms. Otherwise, it would be 
necessary to create a prototype application with user 
interface components for subsequent development 
of automated platform-dependent tests.

It consists of three main stages: initialization of 
the testing process, test execution, and generation 
of testing reports. These steps are discussed in more 
detail below.



Section 2. Technical sciences in general

8

Figure 2. High level architecture of testing wrappers

The interaction process of the system components for initiating tests is represented in the diagram (figure 3).

Figure 3. Diagram of communication process between CI/CD, Task Manager and Cloud device

During the testing process initialization stage, the 
CI/CD system activates a procedure by contacting the 

task scheduler. At this point, data on the tested library, 
including its software interface and binary code, are 



IMPROVING MOBILE APP QUALITY THROUGH OPTIMIZED TESTING STRATEGIES

9

transmitted. Based on the received information, the 
network layer and agent application containing the 
tested library and network layer for interaction with the 
scheduler are generated. The agent application is then 
loaded onto the test devices. Although only one device 
is depicted in the diagram, in practice, the number can 
be arbitrary. Ideally, no more than one hundred devices 
should be assigned to one scheduler instance. At the 
conclusion of this stage, the task scheduler informs the 
CI/CD server about the completion of the initializa-
tion process and readiness for the next stage [6].

The test execution stage involves receiving con-
trol commands from the CI/CD system and trans-
mitting calls to agent applications in the cloud. Ini-
tially, the device prepares for the execution of the test 

scenario, for which the task scheduler sends corre-
sponding initialization commands to the agent. Sub-
sequently, a cycle of remote procedure calls begins, 
with the results being returned to the controlling 
server for analysis. Upon completion of this stage, 
the environment is deinitialized after the scenario 
has concluded. The system is ready for testing sub-
sequent test scenarios.

The final stage is the test completion process. 
At this stage, the devices on which testing was con-
ducted are deinitialized, followed by the generation 
of a test report and notification of the CI/CD service 
about the completion of the testing process.

During the testing process, results were obtained, 
as presented in the chart (figure 4).

Figure 4. Time costs of testing methods

Time expenditure modeling was conducted for 
various testing methods, including manual testing, 
unit testing, automated testing, and enhanced ver-
sions of unit and automated testing using the RPC 
method. As expected, manual testing consumes the 
most time, due to the inherent characteristics of this 
approach. Measuring the time spent on manual test-
ing enables an evaluation of the model’s accuracy. 
According to the obtained results, the modeling er-
ror was approximately 16%. This can be attributed to 
the influence of human factors and technical factors 
previously discussed in the study [7; 8].

As for unit and automated testing, the difference 
between practical results and modeled values was 
not as significant. This attests to the high accuracy 
of the developed model and suggests that these re-
sults can be applied for further optimization of the 
testing process.

Now, let us focus on the results obtained using 
the RPC method and the conventional approach. 
Based on the graph, testing with the RPC method 
requires, on average, 45% less time for the given 
test environment configuration. However, it should 
be noted that results may vary for other testing 



Section 2. Technical sciences in general

10

purposes and test environments. In this approach 
to testing, the complexity of the tested library’s 
functionality and its volume play a significant role.

Conclusion
In conclusion, it can be stated that, throughout 

the practical experiment, a task scheduler was suc-
cessfully developed and implemented, effectively 

managing the testing process on remote devices. 
This approach allows for the integration of exist-
ing automated testing methods without the need 
for making significant alterations to their struc-
ture. This ensures the optimization of the testing 
process and a substantial reduction in time expen-
diture.

References:
1. Gao C., Jiang S., Rong G. Software process simulation modeling: preliminary results from an updated 

systematic review, Proceedings of the 2014. International Confernce Software System Process – ICSSP 
2014. URL: https://doi.org/10.1145/2600821.2600844

2. França B., Travassos G. Are we prepared for simulation based studies in software engineering yet? CLEI 
Electronic Journal, – 16. 2013. – 9 p.

3. Saremi R. A hybrid simulation model for crowdsourced software development, Proceedings of the Fifth 
International Workshop on Crowd Sourcing in Software Engineering, 2018. – P. 28–29.

4. Nassal A general framework for software project management simulation games, Proceedings of the 
Conference on Information Systems and Technology, 2014. URL: https://doi.org/10.1109/CIS-
TI.2014.6877074

5. Lin C. T., Li Y. F. Rate-based queueing simulation model of open source software debugging activities, 
IEEE Trans. Softw. Eng. (2014). URL: https://doi.org/10.1109/TSE.2014.2354032

6. Uzzafer M. A simulation model for strategic management process of software projects, J. Syst. Softw. 
(2013). URL: https://doi.org/10.1016/j.jss.2012.06.042

7. Mahanti Rupa, Neogi M. S. and Bhattacherjee Vandana. “Factors Affecting the Choice of Software Life 
Cycle Models in the Software IndustryAn Empirical Study,” Journal of Computer Science (Science Pub-
lications), – P. 1253–1262. ISSN1549-3636, 2012.

8. Trivedi Prakriti, Ashwani Sharma. “A Comparative Study between Iterative Waterfall and Incremental 
Software Development Life Cycle Model for Optimizing the Resources using Computer Simulation”. 
Information Management in the Knowledge Economy (IMKE), IEEE, 2013. – P. 188–194.


