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Abstract. In this paper, we study the almost everywhere solution of one dimensional mixed 
problem for one class fourth order differential equations and some a priori estimates are obtained 
for the almost everywhere solution of the mixed problem under consideration.
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In this work, we study the almost everywhere solution of the following one dimensional mixed problem:
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where � � 0  is a fixed number; 0 � � ��T ; F  and 
φ  are the given functions, and u t x( , )  is a sought 
function, and under the almost everywhere solution 
of problem (1)–(3) we understand the following:

a) 
u t x u t x u t x u t x
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b) equation (1) is satisfied almost everywhere in 
( , ) ( , )0 0T � � ;

c) all the conditions (2) and (3) are satisfied in 
ordinary sense.

There have been many works devoted to the 
study of mixed problems for nonlinear fourth order 
(see [1; 2; 3; 5] and references therein).

As the system sinnx
n� � �
�

1  forms a basis in the 
space 2(0, ),L π  then it is obvious that every almost 
everywhere solution u t x( , )  of problem (1)–(3) has 
the following form:
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In the next, after applying Fourier method, the 
finding of functions u tn ( )  ( , ,...)n =1 2  is reduced to 
solving the following countable system of nonlinear 
integral equations:
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Using the definition of almost everywhere solu-
tion of problem (1)–(3), it is easy to prove (see [3]) 
the following
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n

( , ) ( )sin�
�

�

�
1

 is any almost 

everywhere solution of problem (1)–(3), then func-
tions u t nn ( ) ( , ,...)=1 2  satisfy the system (6).
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We define the norm in this set as follows:
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It is known (see [5]) that all these spaces are Ban-
ach spaces.

Theorem.
1. Let the right side of equation (1) be as follows:

F t x u u u ux xx xxx( , , , , , ) =
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where C > 0  is a constant and � � 0  is a number ap-
pearing in the equation (1).

2. � �R 0  in [ , ] [ , ] [ , ] ( , )0 0 2 2T R R� � � � �� ��
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where CR > 0  is a constant.

Then the following a priori estimate holds for all 
the possible almost everywhere solutions u t x( , )  of 
problem (1)–(3):
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where C > 0  is a constant.
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 be any almost 

everywhere solution of problem (1)–(3). Then, by 
virtue of above lemma, functions u t nn ( ) ( , ,...)=1 2  
satisfy the system (6).

From system (6) we obtain� �t T[ , ]0 :
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Then, using conditions of this theorem for 
R R= 0 , we obtain from (15) that � �t T[ , ]0 :
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Now, using following estimates from [3]
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Then, using estimates (19)–(21), from (17) we obtain that � �t T[ , ]0 :
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Applying Bellman’s inequality [4, p.188, 189], from (22) we obtain:
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that is, all the possible almost everywhere solutions u t x( , )  of problem (1)–(3) are a priori bounded in B T2
3
, . 

Theorem is now proved.
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