Section 1. Information technology

https://doi.org/10.29013/EJTNS-22-3.4-3-14

Mammadova Kifayat A.,
Azerbaijan State University of Petroleum and Industry,
Associate Professor of Computer Engineering Department

Abasov Ibrahim Adil,
Azerbaijan State University of Petroleum and Industry,
Master's student of the Department of Computer Engineering

THE ROLE OF COMPLEX AND POORLY STRUCTURED INFORMATION PROCESSES IN OBTAINING BIG DATA

Abstract. Large information spaces create several problems, including information loading. The study focused on the USENET News domain, an open-access computer bulletin board that distributes messages and software. A conceptual framework has been developed to eliminate inconsistencies in the dictionary, which requires a flexible organization of information access interfaces and an individualized structure. A copy of this structure is being created as part of the work to create an operational innovation system - INFOSCOP. In Infoscope, users can change the predefined structure of the system according to their semantic interpretations. The approach adopted by INFOSCOP differs from other approaches in that it requires less prior structuring by senders.

Keywords: Infoscope, Usenet, information life cycle, HELGON system, information lens, virtual newsgroups, CLOS.
Маммадова Кифаят Аслан
Азербайджанский Государственный Университет
Нефти и Промышленности,
доцент кафедры «Компьютерная инженерия»
Абасов Ибрахим Адил
Азербайджанский Государственный Университет
Нефти и Промышленности,
магистрант кафедры «Компьютерная инженерия»

РОЛЬ СЛОЖНЫХ И ПЛОХО СТРУКТУРИРОВАННЫХ
ИНФОРМАЦИОННЫХ ПРОЦЕССОВ В
ПОЛУЧЕНИИ БОЛЬШИХ ДАННЫХ

Аннотация. Большие информационные пространства создают несколько проблем, включая загрузку информации. Исследование было сосредоточено на домене USENET News, компьютерной доске объявлений с открытым доступом, которая распространяет сообщения и программное обеспечение. Разработана концептуальная основа для устранения несоответствий в словаре, что требует гибкой организации интерфейсов доступа к информации и индивидуализированной структуры. Концепция этой структуры создается в рамках работы по созданию операционной инновационной системы — ИНФОСКОП. В Инфоскоп пользователи могут изменять предопределенную структуру системы в соответствии со своими семантическими интерпретациями. Подход, принятый ИНФОСКОП, отличается от других подходов тем, что он требует меньшего предварительного структурирования отправителями.

Ключевые слова: ИНФОСКОП, Юзнет, жизненный цикл информации, система HELGON, информационная линза, виртуальные новостные группы, CLOS.

Введение. Объем данных, доступных на настольных компьютерах людей через глобальные сети, достаточно велик, что приводит к проблеме перегрузки информации. Одной из глобальных сетей, которая широко выражает эту проблему, является Интернет, особенно USENET, который серьезно занимается распространением новостей. В зависимости от способа получения новых сообщений пользователи сталкиваются со следующими проблемами: (1) пользователи, желающие отправить сообщение через USENET, должны сначала классифицировать сообщение в определенную группу сообщений, и (2) читатели сообщений должны находить сообщения, просматривая информацию. пространство с семантическими классификациями разных отправителей. USENET установила общую иерархию классификации новостей, чтобы обеспечить близкие семантические совпадения при поиске групп новостей.

Мы провели эмпирическое исследование, чтобы глубже понять проблему перегрузки данными в контексте новостей. Наши результаты показали, что только несколько групп новостей необходимо читать в мегабайтах
в месяц (см. рис. 1). Многие из наших испытуемых заявили, что им было бы интересно узнать больше по этой теме, но огромный объем информации помешал им эффективно использовать имеющуюся информацию.

Самые читаемые и набирающие популярность группы новостей

□ — объем (КБ) ■ — количество сообщений

Рисунок 1. Примерная статистика USENET за месяц

С более чем 400 группами новостей USENET News предлагает уникальную возможность узнать, как загружать информацию. Строка, отмеченная белыми прямоугольниками, показывает, что 6 самых популярных групп новостей имеют около 3000 сообщений в месяц. Общая объем данных этих 3000 сообщений составляет 5000 КБ (строка, отмеченная черным прямоугольником). На этой диаграмме нет популярных источников или вторых телеконференций, которые усугубляют проблему.

Рисунок 2. База данных новостного трафика USENET
1. Концептуальная основа. Жизненный цикл информации

Наши работы по разработке систем, работающих с сообщениями, показывают, что сообщения проходят жизненный цикл информации. Как показано на рисунке 2, связанные сообщения приводят к диалогу, когда они пересекают путь между временем отправки (когда сообщения создаются) и временем чтения (когда сообщения прочитаны). Однако только некоторые сообщения интересны в течение длительного времени, и эти сообщения проходят путь между временем чтения и временем хранения (когда сообщения сохраняются для последующего поиска). Сохранение сообщений указывает на то, что эти темы сообщений интересны.

После сохранения сообщения его жизненный цикл не заканчивается. Если у пользователей есть вопросы (во время вопроса), они могут получить эту информацию. После сохранения сообщения его жизненный цикл не заканчивается. Если у пользователей есть вопросы (во время вопроса), они могут получить эту информацию. Процесс получения сообщения от момента вопроса до момента чтения называется поиском и решается системой HELGON в нашем исследовании. Добавление семантики персонального поиска во время хранения упрощает поиск.

Когда у пользователей есть вопрос, но они ранее не сохраняли никакой соответствующей информации, они участвуют в процессе обнаружения, и новое сообщение отправляется как запрос на расширение их среды [13]. Поскольку процесс обнаружения включает взаимодействие с несколькими агентами (другими пользователями новостей USENET), очень маловероятно, что любые два идентичных за- проса приведут к одному и тому же набору ответов. Это делает процесс обнаружения полностью отличным от процесса поиска.

Четыре этапа обработки информации. Каждый этап представляет собой несколько движений и задач. Обработка времени отправки — это то, что пользователи делают для отправки сообщения. Это варьируется от простого определения адресата и темы (как в электронных письмах UNIX) до жестких категорий (как в группах новостей USENET) и тонкого структурирования семантики содержимого сообщения.

Развитие времени чтения — это работа, которую выполняют пользователи, чтобы найти и прочитать интересующую их информацию. Это варьируется от простого просмотра информационного пространства (например, программы чтения новостей UNIX RN) до написания конкретных правил для фильтрации информации, содержащей сложную семантику.

Во время хранения у пользователей есть возможность добавить к сообщению семантику поиска. Обработка времени вопросов происходит, когда пользователям нужна конкретная информация. В прошлом пользователям приходилось запрашивать все, от поиска текстовых строк до использования грубой семантики (например, папок электронной почты UNIX) и мелкосернистой семантики, хранящейся вместе с информацией. Если информация еще не сохранена, пользователи должны быть вовлечены в обнаружение.

Ситуационные и системные модели. На ряду с жизненным циклом информации анализ ситуации и системных моделей поддерживает эту концептуальную основу [3]. Пользователи выражают свои желания в терминах текущей задачи, контекста или мировоззрения (ситу-
ционная модель), а компьютерная система предоставляет им информационное пространство, организованное вокруг чужого мировоззрения (системная модель). Например, пользователь, интересующийся языком CLOS (объектная система common-lisp), может не найти совместимых сообщений, поскольку они находятся в группах новостей comp.lang.lisp и uuc.cs.commonloops. Группы новостей CLOS нет, но пользователь знает только этот термин (Фурнас описывает термин, который он называет проблемой словаря [6]). Наше исследование исследует различные способы преодоления разрывов между ситуационными и системными моделями. В большинстве подходов пользователями помогают выразить себя в системной модели, заставляя их адаптировать свою личную модель ситуации к более глобальной системной модели. Эта задача потребляет ценных когнитивных ресурсов. Подход, изучаемый с помощью ИНФОСКОП, заключается в разработке систем, которые изучают пользователей и позволяют пользователям выразить структуру в своих моделях ситуаций. Системная модель, предоставляемая ИНФОСКОП, может быть адаптирована пользователям до тех пор, пока она не станет более близкой к их ситуационным моделям.

Аналитический взгляд на проблему, «разрыв в производительности и оценке», был разработан Норманом. Процесс выполнения включает в себя перенос целей в физическую систему, используемую для достижения этих целей. Область оценки — это сравнение физической системы, в которой определена часть любой задачи видна пользователю и выполняется с целями, условиями и выражениями.

Другой анализ — это анализ Мора внешних и внутренних карт задач. В этой модели компьютерная система рассматривается как «концептуальный мир сам по себе». Анализ Мора показывает, что в процессе проектирования возникают определенные концептуальные несоответствия между внутрениеми описаниями системы и внешней реальностью задач и их спецификацией в интересующей пользователя области.

Информационная линза (линза). Эта система [9] решила проблему перегрузки поля электронной почты. Существуют различия между новостными и почтовыми доменами. Например, почтовые программы должны показывать список последних получателей и обычно знают, кто эти люди. Однако отправители новостного сообщения очень мало или совсем ничего не знают о том, кто или сколько читателей получают их сообщения. Хотя это отличается от целей ИНФОСКОП и INFORMATION LENS, основная цель фильтрации большого количества сообщений для поиска нужной информации является общей для обеих систем. INFORMATION LENS позволяет отправителям структурировать свои сообщения. Отправитель выбирает шаблоны, которые представляют определенный тип сообщения и компоненты заголовка.

Читатели сообщений создают фильтры, которые находят сообщения, соответствующие определенной структуре. Например, студент может написать фильтр для сбора всех типов сообщений «объявления о собрании» с типом «профессор» в строке заголовка «От».

Эта идея хорошо работает в небольшой пользовательской среде, где можно применять стандарты и ожидания, но может не сработать в глобальной среде. Он также может дать сбой в среде, где люди просто хотят выполнять свою работу. Причины этого связаны с соотношени-
ем затрат и доходов, полученных отправителем сообщения [7]. Отправитель не является читателем, и поскольку добавление структуры помогает читателю найти сообщение, добавление этой структуры не принесет прямой выгоды отправителю. Типичные отправители просто хотят отправить текст сообщения. Поскольку отправители часто не хотят предоставлять дополнительную структуру, информационная линза позволяет пользователям определять фильтры без шаблонов, используя текст в полях заголовка [8]. К сожалению, это, вероятно, позволяет обойти уже описанные полуструктурированные шаблоны сообщений и может заставить пользователей определить два набора фильтров. Первый набор описывает фильтры, для которых требуются компоненты шаблона, а второй описывает фильтры, использующие обычный текст, поскольку некоторые сообщения не имеют компонентов шаблона.

Наше исследование основано на предположении, что отправители не будут тратить дополнительные когнитивные усилия, необходимые для тщательной классификации сообщений, но читатели будут тратить ограниченное количество усилий на ресурсуризацию, поскольку они осознают прямую выгоду (сообщение легко найти). Это делается за счет предоставления читателям возможности реконструировать информационное пространство по индивидуальной семантике при чтении сообщений.

2. Проект ИНФОСКОП

Проект ИНФОСКОП охватывает применение системы, которая охватывает многие ранее обсуждавшиеся принципы. В этом документе описываются три отдельных раздела: (1) графический пользовательский интерфейс для доступа к сообщениям новостей, (2) виртуальные группы новостей, метод заполнения пробелов между статусом домена новостей и моделями системы и (3) проблемы с виртуальными группами новостей.

ИНФОСКОП и текстовые интерфейсы. Есть несколько интерфейсов к новостно-информационному пространству. Наиболее распространены интерфейсы типа RN. Он предоставляет пользователям серию текстовых строк, которые включают имена и статусы групп новостей.

*** 1 непрочитанная статья в Alt.hypertext – вы сейчас читаете? [инк]
*** 13 непрочитанных статей на alt.sources – вы сейчас читаете? [инк]
*** 1 непрочитанная статья в Boulder.general – вы сейчас читаете? [инк]
*** 2 непрочитанные статьи в comp.ai – вы сейчас читаете? [инк]
*** 23 непрочитанных статьи на comp.ai – вы сейчас читаете? [инк]
*** 14 непрочитанных статей на comp.binaries.mac – вы сейчас читаете? [инк]
*** 9 непрочитанных статей на comp.cog-eng – вы сейчас читаете? [инк]
*** 99 непрочитанных статей на comp.lang.lisp – вы сейчас читаете? [инк]
*** 1 непрочитанная статья на comp.mail.headers – вы сейчас читаете? [инк]
*** 6 непрочитанных статей на comp.newprod – вы сейчас читаете? [инк]
*** 11 непрочитанных статей на comp.sources.games – вы сейчас читаете? [инк]
*** 30 непрочитанных статей в comp.sources.misc – вы сейчас читаете? [инк]
*** 1 непрочитанная статья на comp.sources.unix – вы сейчас читаете? [инк]
*** 1 непрочитанная статья на comp.sys.mac.digest – вы сейчас читаете? [инк]
*** 289 непрочитанных статей на comp.sys.mac – вы сейчас читаете? [инк]
Текстовые интерфейсы не отображают связи между группами новостей в информационном пространстве. Это может быть трудной задачей, чтобы смотреть на этот тип окружающей среды.

Инструмент браузера позволяет пользователям просматривать и изучать текущую структуру корзины в ИНФОСКОП. Сообщения в корзине также просматриваются в этом инструменте. Здесь пользователь может надеть указатель мыши на объекты для чтения, размещения или доступа к операциям виртуальной структуры. Прямоугольные узлы являются промежуточными классификациями и связаны только с базовыми действиями, такими как «показ некоторых дочерних элементов». Овальные узлы содержат сообщения и представляют группы новостей USENET. Они связаны с такими операциями, как «просмотр сообщений» и «создание виртуальной корзины». Выделенные овальные узлы представляют собой определяемые пользователем виртуальные группы новостей и представляют собой расширения структуры USENET.

Файл запуска управляет представлением групп новостей, но RN не предоставляет никаких инструментов для управления этим файлом. Хотя этот тип интерфейса может быть удобен для пользователей, имеющих опыт работы с программным обеспечением и знакомых с организацией информационного пространства, он не дает эффективного описания структуры. Пользовательский интерфейс ИНФОСКОП представляет собой графический интерфейс, который представляет организацию информационного пространства новостей путем отображения иерархии групп новостей на экране компьютера.

В корзине ИНФОСКОП отображаются классификации браузеров, группы новостей или виртуальные группы новостей, для которых требуется представление трех узлов. На рисунке 4 узлы comp и comp.lang служат для описания структуры информационного пространства. Узел comp.lang.lisp — это группа новостей USENET, а узел comp.lang.lisp.clos — виртуальная корзина, содержащая избранные сообщения, отфильтрованные из групп новостей comp.lang.lisp и cu.cs.commonloops. Виртуальные группы новостей представляют области интересов отдельного пользователя и становятся центром внимания пользователей. Такая реорганизация информационного пространства помогает сократить разрыв между моделью ситуации и системы за счет представления классификаций, основанных на пользовательской терминологии.

Сообщения. В дополнение к просмотру и управлению структурой корзины в ИНФОСКОП пользователи могут использовать панель просмотра сообщений браузера для отображения и навигации по набору сообщений в корзине. Браузер сообщений в правой части рисунка 3 показывает сообщения из виртуальной корзины comp.lang.lisp.clos. В программе RN многих неопытных пользователей удивляет отсутствие структуры, применяемой к логическим наборам сообщений. Разговоры часто представляют собой нечто большее, чем «разовые» диалоги. Когда несколько пользователей отвечают на определенное общение, каждое из этих сообщений может создавать дополнительные диалоги или темы. Сообщения RN показывают хронологический порядок, в котором человек подходит к своему компьютеру. Хотя в системе предусмотрена команда сканирования всех сообщений по од-
ной теме, структура тем в рейтинге теряется. ИНФОСКОП организует сообщения в виде разговоров и тем. Диалог состоит из узла сообщения, всех ответов на сообщение в этом узле и всех ответов на сообщение до тех пор, пока оно не достигнет конечных узлов.

Такой способ отображения структуры сообщений имеет ряд преимуществ. В системе ИНФОСКОП разговоры можно рассматривать как объект. Это означает, что такие операции, как «Сохранить этот разговор», можно использовать для записи сразу всех сообщений разговора. Сохранение дополнительных разговоров так же просто, как сохранение всех разговоров. Например, если кто-то отвечает на публикацию особенно интересным комментарием, внутри беседы может начаться совершенно новый разговор. Вы можете запомнить этот разговор, нажав на корневой узел.

Виртуальные группы новостей. Для просмотра виртуальных корзин их необходимо сначала создать. Этот процесс происходит в инструменте фильтрации корзины (см. рис. 3). Чтобы создать виртуальную структуру, пользователи выбирают одного из родителей виртуальной корзины, которая может быть реальной или виртуальной корзиной. Когда пользователи выбирают «Создать виртуальную корзину» или «Редактировать виртуальную корзину», они входят в инструмент фильтра и получают частично заполненный фильтр. ИНФОСКОП использует любую информацию для заполнения фильтра. При создании новой корзины он заполняет имя по умолчанию для родителя, используемого для доступа к новой корзине и процессу реструктуризации. В примере на рисунке 4 пользователям редактировать определение виртуальной корзины comp.lang.lisp.clos. Используя эту новую виртуальную корзину, пользователи получают необходимый репозиторий для информации CLOS, отображаемой пользователем, который идентифицирует корзину, используя имя, которое семантически добавляется к этой информации. Позволяя отдельным пользователям определять виртуальные корзины, глобальная модель системы может быть преобразована в модели отдельных ситуаций.

A* Indicates That This Field Must Be Filled.
* Basket Name: comp. lang.
Parent: CU.CS.connio loops
Parent: comp. lang. Lisp
Parent: a sering
Include: subject: clos
Include: subject: pcl
Include: a header: line
Exclude: a header: line

Рисунок 3. Определение виртуальной структуры

При определении виртуальной структуры FilterMaker позволяет пользователям создавать и изменять изображения фильтров для виртуальных корзин. В этом примере редактируется виртуальная корзина comp.lang.lisp.clos. Корзина наследует сообщения от существующих корзин comp.lang.lisp и cu.cs.commonloops, которые отражают потоки pcl или clos.
3. Агенты

К сожалению, индивидуализация такой модели системы столь же сложна, как и задача любого структурного изменения. Структура должна основываться на анализе паттернов пользовательского поведения, о которых пользователи не знают. Компьютерная система может помочь пользователям анализировать это поведение на основе определенных концепций поведения пользователей и может использовать для помощи в создании и изменении структуры. В ИНФОСКОП эти методы называются агентами. Агенты ИНФОСКОП представляют собой набор эвристик, основанньых на правилах, использующих информацию, полученную в результате анализа поведения пользователя, для предоставления пользователям рекомендаций. Эти предложения относятся к будущей модификации модели системы, которую агенты считают необходимой для правильного развития структуры. Затем пользователи могут принимать, отклонять или изменять эти предложения, и эволюция продолжается в этом совместном режиме. Кроме того, агенты анализируют отклоненные или измененные предложения, чтобы можно было соответствующим образом скорректировать пользовательские модели. Когда предложение отклоняется, необходимо что-то сделать, чтобы гарантировать, что та же самая ошибка суждения не будет включена в будущие предложения.

Агенты, которые выполняют этот анализ предложений и модифицируют других агентов, называются управляющими агентами. Они меняют не то, что делают агенты, а то, почему и когда. С точки зрения пользователя агенты предлагают механизм обратной связи, который помогает пользователю изменить отображаемую структуру в зависимости от шаблонов использования системы. Агенты отправляют пользователю предложения, которые необходимо принять для реализации. В ИНФОСКОП агенты помогают настроить виртуальные фильтры, а пользователи критикуют эти предложения, чтобы сделать их более точными. Это превосходит, чем заставлять пользователей вспоминать достаточно информации для определения полезных фильтров.

Механизмы, используемые агентами для выполнения многих функций, основаны на «Рациональном анализе человеческой памяти» Андерсона. Его анализ приводит к выявлению нескольких эффектов, которые помогают измерить вероятность потребности в элементе с учетом эффективности текущих моделей использования или истории потребности в таких элементах. По этой причине агенты отслеживают большое количество информации о системных действиях. Три влияния, которые обсуждает Андерсон, — это частота, инновации и пустота. Частота относится к тому, сколько раз элемент необходим в течение определенного периода времени. Новизна — это количество времени, прошедшее с момента последней потребности в элементе, а интервал относится к распределению времени воздействия этих веществ. Разработаны уравнения (степенные функции), которые служат предикторами текущей потребности в элементе, который был необходим в прошлом, сохраняя неизменными определенные факторы в определенных ситуациях. Например, элемент, который был нужен 10 раз в прошлом месяце, теперь, вероятно, понадобится, если его прошлые воздействия равномерно распределены во времени, не все прошлые события произошли в первые три дня этого месяца. Точно так же, если предмет
когда-то был нужен давным-давно, вероятность текущей потребности меньше, чем для недавно использованного предмета. Эти эффекты требуют, чтобы агенты снижали свою ценность, когда частота тем сообщений низкая, увеличивали их, когда инновации высоки, смягчали эти оценки, анализируя эффекты разрыва, и так далее (см. рис. 3).

Рисунок 4. Группировка агентов

В ① пользователь взаимодействует с ИНФОСКОП в течение длительного периода времени, пока агент ② не признает, что пользователь прочитал менее 15% сообщений в данной группе новостей. В этом случае агент-агент ③ приказывает пользователю начать собирать темы, которые считаются интересными и неинтересными. Когда собрано достаточно информации, агент отправляет предложение пользователю ④. Если пользователь принимает предложение агента, ③ продолжает собирать темы для смены фильтров в будущем. Если пользователь отклоняет предложение, агент çalıṣır пытается выяснить причину и использует эту информацию для смены агента ②. В этом примере пользователь жалуется, что агент слишком сильно мешает. Он был изменён, чтобы пользователь реагировал, когда он прочитал 10% или меньше сообщений в группе новостей.

В ИНФОСКОП пользователи имеют прямой доступ к анализу в случае аварии. Если систему что-то интересует, а пользователь не согласен, создается диалог для разрешения несоответствий. Агенты ИНФОСКОП контролируют две общие области использования системы. Первая связана с индивидуальными предпочтениями пользователя в повседневной работе системы. Это включает в себя то, какие корзины должны отображаться в первую очередь, и многие другие аспекты повседневной работы. Второй аспект использования системы, управляемой агентом, — это фактическое содержание сообщений, которые считаются интересными или неинтересными. Эта задача является статистической и требует от агентов отслеживания того, что пользователи читали и на что не обращали внимания в течение длительного времени. Это происходит на двух уровнях. На более высоком уровне
система контролирует количество интересной информации, регулярно попадающей в ту или иную корзину. Когда сумма слишком мала, агенты предлагают изменить существующую структуру. Темы, затронутые в низкоуровневом сообщении, сохраняются для создания и улучшения фильтров. Из этих двух частей пользовательского профиля агенты ИНФОСКОП узнают о людях, регулярно использующих систему.

Выводы.

Проблемы с загрузкой информации, создаваемые большими хранилищами данных, затрудняют пользователям поиск нужной информации. Языки запросов к базам данных используются только в высокоструктурированных и однородных (однотипных) информационных пространствах. Новости USENET исследуются в основном тиражными методами. Другой способ решить проблему — разрешить пользователям отправлять полуструктурированные сообщения. К сожалению, есть признаки того, что пользователи не хотят прилагать необходимые усилия. Новый подход к этой проблеме помогает пользователям создавать динамически более эффективные фильтры во время чтения. Это возлагает бремя дополнительного структурирования на человека, который получает наибольшую пользу от этих усилий. ИНФОСКОП Symbolics — полнофункциональный прототип, реализованный на машинах Lisp. Он преодолевает ряд недостатков РН как среды доступа к большим, плохо структурированным информационным пространствам. Он заменяет ориентированный на телетайп диалог RN самым современным интерфейсом, который включает в себя современные инструменты пользовательского интерфейса. Он обеспечивает (1) глобальный обзор информационного пространства, (2) поддержку диалогов, (3) методы фильтрации для персонализации и (4) агентов, помогающих анализировать поведение пользователей. Важной особенностью ИНФОСКОП является то, что он работает в системе USENET.

ИНФОСКОП также можно рассматривать как приставку к частям ИНФОРМАЦИОННОЙ ЛИНЗЫ. Хотя ИНФОСКОП не полностью интегрирует ряд типов шаблонов, он расширяет возможности пользователей по определению фильтров, предоставляя агенты, помогающие создавать более эффективные фильтры. Используемые методы могут расширить возможности таких систем, как ИНФОРМАЦИОННЫЕ ЛИНЗЫ, поскольку эти системы требуют незначительных усилий со стороны считывателей сообщений.

ИНФОСКОП намеренно не анализирует содержание сообщений. Фильтры представляют собой персональную структуру поверх сообщений и позволяют сохранять структуру вместе с сообщениями. Он должен быть более тесно интегрирован с ИНФОСКОП HELGON для поддержки полного жизненного цикла данных (см. рис. 2). Интеграция усилий в поисковую систему, которая может использовать эту структуру, такую как HELGON [5], повысит мощность обоих систем.
Список литературы:

